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Purpose

Acquiring magnetic resonance imaging (MRI) scans with
peripherally injected gadolinium-based contrast agent
(GBCA) is a crucial step to many neurosurgical inter-
ventions [1]. However, it presents challenges to common
neuroimaging workflows focused on cortical surface recon-
struction, segmentation and brain atlas registration [2], such
as fMRIPrep and FreeSurfer [3, 4]. The potential solution
of conducting two MRI sessions, with and without contrast,
places a strain on healthcare resources. Machine learning
(ML) models, particularly 3D convolutional neural networks
(CNN), have been increasingly used for image synthesis and
segmentation tasks, with a widely used architecture being the
‘U-Net’ [5]. A previous study by Bottani et al. explored the
use of a 3D U-Net to translate contrast-enhanced scans into
non-contrast-enhanced T1w brain MRIs [6]. Using segmen-
tation tools derived from the Statistical Parametric Mapping
(SPM) software, they found significantly smaller absolute
volume differences in gray matter, white matter and cere-
brospinal fluid between ground truth non-contrast scans and
synthetic non-contrast scans, compared to the absolute differ-
ences between ground truth and contrast-enhanced images.

In this work, we employ the commonly used fMRIPrep/
FreeSurfer neuroimaging pipeline to characterize biases in
morphometric metrics when processing scans with contrast
enhancement. We propose MRI-degad, a CNN model con-
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verting heterogeneous clinical T1w scans with gadolinium
enhancement (MRI-gad) to counterpart scans with no con-
trast (MRI-nogad). We perform a robust validation strategy,
leveraging voxel-based metrics and fMRIPrep outcomes.

Methods

We identified 63 patients who underwent stereoelectroen-
cephalography and deep brain stimulation surgery and
acquired 1.5-T MRI-gad and MRI-nogad scans. Preprocess-
ing included bias correction, intra-subject rigid registration
fromMRI-nogad toMRI-gad space and isotropic resampling
to 1mmresolution. Subjectswere randomly split into training
(n = 29), validation (n = 8) and testing (n = 17) datasets.
Using the Medical Open Network for AI (MONAI) frame-
work [7], a 3D U-Net was implemented, herein termed the
MRI-degad model, which was trained on subject-matched
MRI-gad and MRI-nogad scans, with the former as the input
and the latter as the target. A random search of the following
hyperparameters was used to optimize our model:

• Patch size 3D patch sizes of length 16mm and 32mm
were considered.

• Batch size Batches of size 32, 64 and 128 were consid-
ered.

• Learning rate 0.01, 0.001 and 0.005, 0.0001 were con-
sidered for the learning rate.

• Initial number of filters The number of channels in the
first CNN layer was 16, 32 or 64.

• Number of Convolutions The number of convolutions in
a single block was 2 or 3.

OurU-Net used three layers, batch normalization and 20%
dropout. A mean absolute error (MAE) loss function was
used. fMRIPrep was run with a 72-h time limit, extracting
completion times, number of cortical surface holes and cor-
tical thickness.
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Fig. 1 Visual and quantitative comparisons betweenMRI-nogad,MRI-
degad-1, MRI-degad-2, MRI-degad-3 and MRI-synth. A Patch-based
inspection. B Violin plot of MAE, PSNR and SSIM (n = 17). C Vio-

lin plot of fMRIPrep completion times, cortical thickness and cortical
surface holes (n = 10)
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Table 1 Summary of mean
fMRIPrep completion times,
cortical surface holes and
cortical thickness in our test
dataset (n = 10)

Mean fMRIPrep Number of cortical Cortical thickness
completion time (h) surface holes (mm)

MRI-gad 22.644 ± 19.615 628.2 ± 231.0 2.51 ± 0.16

MRI-nogad 6.121 ± 0.959 57.6 ± 20.1 2.36 ± 0.18

MRI-degad-1 6.999 ± 0.641* 124.2 ± 33.4*/** 2.03 ± 0.14*/**

MRI-degad-2 8.141 ± 3.288*/** 132.4 ± 74.3*/** 2.09 ± 0.15*/**

MRI-degad-3 8.470 ± 3.821*/** 110.6 ± 67.7*/** 2.10 ± 0.16*/**

MRI-synth 5.654 ± 0.766* 30.4 ± 8.2*/** 2.39 ± 0.08*

*Significant difference between output and MRI-gad
**Significant difference between output and MRI-nogad

Test images were compared qualitatively through visual
inspection by competent and expert neuroimaging techni-
cians and quantitatively through MAE, structural similarity
index metric (SSIM), peak signal to noise ratio (PSNR) and
the fMRIPrep metrics. A summary of the preprocessing,
model training and validation workflow is in Figure S1 of
the supplementary materials. We compare model outputs to
those of SynthSR (MRI-synth), an out-of-the-box model that
resorts to a synthetic generator and segmentation CNN to
create modality agnostic outputs [8].

Results

From the total dataset (n = 63), all MRI-nogad scans ran to
completion, while 18 MRI-gad timed-out. Mean fMRIPrep
workflow completion time for MRI-gad andMRI-nogad was
24.88 ± 16.68h and 5.93 ± 0.75h, respectively (n = 45).
Following the cortical reconstruction step within fMRIPrep,
the number of surface holes differed significantly between
MRI-gad and MRI-nogad scans, with means of 642.16 ±
199.68 and 94.29 ± 48.81, respectively (n = 45). We pro-
vide a visual comparative evaluation between MRI-gad and
MRI-nogad in the fMRIPrep workflow in Figure S2 of the
supplementary materials.

We performed downstream analyses on the top threeMRI-
degads (MRI-degad-1, MRI-degad-2 and MRI-degad-3),
whose details can be found in Table S1 of the supplemen-
tary materials, and on SynthSR outputs (MRI-synth). These
models were selected from visual inspection based on their
superior resemblance to ground truth MRI-nogad images,
especially in areaswith prior gadoliniumenhancement.Upon
a qualitative inspection of the MRI-degad images, as shown
in Fig. 1A, ourmodels are capable of extracting hyperintensi-
ties corresponding to the presence of contrast agent in vessels,
while maintaining a resemblance of anatomical structures
present in ground truth images. In the MRI-synth scan, sig-
nificant artifacts that appeared to overestimate the boundaries
of the sulci were identified and are circled in Fig. 1A.

A summary of mean fMRIPrep metrics for test dataset
scans that successfully completed the workflow (n = 10)
can be found in Table 1 and the violin plot representations
can be seen in Fig. 1C. All MRI-degads successfully com-
pleted fMRIPrep processing, while two MRI-synth scans
did not complete the fMRIPrep workflow, exiting at the
registration step. All MRI-degads had significantly lower
completion times, number of cortical surface holes and cor-
tical thicknesses compared to MRI-gad. When compared to
MRI-nogad, MRI-degad-1 had a completion time that was
not statistically different from that ofMRI-nogad.MRI-synth
scans also showed no significant difference to MRI-nogad in
terms of completion time and cortical thickness values.

Violin plots of meanMAE, SSIM and PSNR are shown in
Fig. 1B. Against ground truth MRI-nogad, MRI-degads had
a lower MAE, a higher PSNR and a higher SSIM compared
to MRI-synth.

Conclusion

In this work, we noted that applying fMRIPrep to MRI-gad
results in extended processing and elevated failure rates.
Additionally, significant differences in cortical thickness
and the number of cortical surface holes were observed
when comparing MRI-gad to MRI-nogad. In the FreeSurfer
pipeline, the projection of a scan onto a surface map involves
binary closing operations, typically enhancing the inclusion
of sulci in the mask, yielding a smoother output. However,
the presence of gadolinium may disrupt this process, poten-
tially affecting the accuracy of the hole-filling step, leading
to a higher number of cortical surface holes. The higher
fMRIPrep completion time inMRI-gad furthermore suggests
an extended hole correction process and the significantly
increased cortical thickness in MRI-gad indicates an over-
estimation of the cerebral cortical layer in the presence of
gadolinium.

One of the MRI-degad models featured processing times
with no statistical difference from MRI-nogad and overall,
our workflow completion success rate was more akin to
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MRI-nogad compared to MRI-synth. This can perhaps be
attributed to its high image quality and the structural similar-
ity between MRI-degad and MRI-nogad. Validation through
visual inspection and voxel-basedmetrics,whereMRI-degad
outperformedMRI-synth, confirmed these findings. The two
workflow failures in theMRI-synth group were likely caused
by image distortions.

MRI-degad exhibited some limitations, including dispari-
ties in cortical thickness and cortical surface holes compared
to MRI-nogad. To address these discrepancies, ongoing
efforts will involve model optimization, dataset refinement,
explorationof alternativemodels such as generative adversar-
ial networks and stable diffusion. Additionally, incorporating
more radiologists and neurosurgeons to assess image qual-
ity and evaluating the effect of MRI-degad scans on clinical
diagnosis and surgical planning remain a critical next step.
Our tool holds promise for clinicians and researchers seek-
ing consistent neuroimaging analyses, while reducing MRI
healthcare costs.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-024-03186-
z.
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