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Abstract
Purpose Deep brain stimulation (DBS) is a common treatment for a variety of neurological disorders which involves the
precise placement of electrodes at particular subcortical locations such as the subthalamic nucleus. This placement is often
guided by auditory analysis of micro-electrode recordings (MERs) which informs the clinical team as to the anatomic region
in which the electrode is currently positioned. Recent automation attempts have lacked flexibility in terms of the amount
of signal recorded, not allowing them to collect more signal when higher certainty is needed or less when the anatomy is
unambiguous.
Methods Wehave addressed this problem by evaluating a simple algorithm that allows forMER signal collection to terminate
once the underlyingmodel has sufficient confidence.We have parameterized this approach and explored its performance using
three underlying models composed of one neural network and two Bayesian extensions of said network.
Results Wehave shown that one particular configuration, aBayesianmodel of the underlying network’s certainty, outperforms
the others and is relatively insensitive to parameterization. Further investigation shows that this model also allows for signals
to be classified earlier without increasing the error rate.
Conclusion We have presented a simple algorithm that records the confidence of an underlying neural network, thus allowing
for MER data collection to be terminated early when sufficient confidence is reached. This has the potential to improve the
efficiency of DBS electrode implantation by reducing the time required to identify anatomical structures using MERs.

Keywords Deep brain stimulation · Micro-electrode recordings · Deep learning · Bayesian models

Introduction

Deep brain stimulation (DBS) is a common treatment for a
variety of neurological disorders such as Parkinson’s disease
in which the abnormal activation of a particular region leads
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to undesirable characteristic symptomatology. For example,
in PD, the degeneration of dopamine producing regions of
the substantia nigra leads to the abnormal activation of other
regions of the basal ganglia which in turn leads to the disor-
der’s characteristic motor symptoms such as the diminished
ability to initiative and control voluntarymotor actions. DBS
is currently the dominant surgical procedure for this pathol-
ogy and can address the patient’s symptoms directly by
correcting these neural abnormalities, stimulating particu-
lar neural populations in order to suppress their pathological
activity [7,13]. This is highly beneficial if other non-surgical
techniques, such as pharmaceutical treatment, fails to ade-
quately control the patient’s symptoms.

TheDBS intervention itself consists of the highly accurate
placement of the stimulation electrodes using a stereotaxic
frame into a pre-defined region of the patient’s subcortical
anatomy such as the subthalamic nucleus (STN) or globus
pallidus internus (GPi) in the case of Parkinson’s disease.
Often, the clinical workflow for DBS will consist of multiple
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steps, including a preoperative planning phase, an intra-
operative electrode positioning phase, and a postoperative
stimulation parameter tuning phase.

The preoperative planning phase uses T1- and T2-
weighted clinical MR images in which the anatomy of
interest is segmented and the potential electrode trajecto-
ries can be investigated. Recent approaches in image-guided
interventions encourage the use of these preoperative images
to assist with the navigation of the DBS electrodes, albeit at
a coarser resolution level due to the presence of several con-
tributing sources of error including (1) brain-shift resulting
from the craniotomy site, (2) small shifts in the stereotaxic
frame’s position, and (3) angular error in the insertion angle
of the electrode [12]. Exclusive use of MRI would lead to a
sub-optimal STN localization in 20% of cases, according to
Lozano et al. [13].

Because of these sources of error, an additional data
modality must be incorporated to ensure correct position-
ing during the intra-operative phase. Intra-operative imaging
modalities such as intra-operative CT or X-ray have the abil-
ity to readily identify the electrodes but, due to a lack of
soft-tissue contrast, cannot readily distinguish between the
target region and surrounding structures [19].More advanced
intra-operative imaging modalities that have this capability,
such as intra-operative MRI, are prohibitively expensive and
require specialized operating suites.

An alternative to these predominantly structural imaging
modalities, functional electrophysiological modalities are
often used instead, demonstrating robust results [20]. The
most common of these is the trial-and-errormethod inwhich
the patient remains conscious during the surgery, allowing
the clinical team to stimulate regions along the electrode
trajectory and determine the optimal electrode positioning
from the patient’s observable behaviour. This also allows for
the clinical team to determine the presence of side-effects,
although recent studies have found there to be a discon-
nect between this intra-operative and later postoperative
assessments [3]. In addition, awake surgery is uncomfort-
able for the patient and potentially infeasible for patients
with very advanced PD, whose motor symptoms may pre-
vent them from being adequately still during the procedure.
Thus, micro-electrode recording (MER) is often used as the
preferred intra-operative data modality for DBS electrode
implantation. Instead of stimulating the patient and observ-
ing their behaviour, MER electrodes measure the activity of
the proximal neural region surrounding them, allowing the
clinical team to infer the electrode’s position through the
characteristic signature of the region of interest [2,17]. In
the current standard-of-care, this signature is determined by
an expert neurologist by listening to the signal. By integrat-
ing different parameters specific to the surgical environment,
such as the depth of the electrode, the distance to the target
coordinate determined by imaging, and by deciphering the

functional neurophysiological characteristics contained in
the signal [9], the neurophysiologist establishes the approx-
imate position of the electrode by classifying whether or
not the MER arose from inside the STN. This is repeated
at regular depth intervals for each trajectory used during the
intervention. This requires extensive expertise and is a highly
subjective process that could benefit from automation.

Previous work in automatically analysingMER for identi-
fying subcortical DBS target regions have been traditionally
feature-based in which the MER signal is represented as a
vector of pre-defined, engineered features that represent cer-
tain statistical features of the underlying neural population
(i.e. firing rate, presence of different frequency bands, etc.)
[5,18,21–23]. Although these feature-based approaches are
highly automatic, transparent, and can be based on an arbi-
trary amount of signal, recent data-driven methods operating
on the raw signal have proven to have higher accuracy [16].
Among thesemethods, SepaConvNet, a convolutional neural
network, has been able to predict the presence of the STN
from one-second MER signals [16]. This fixed time can be
made dynamic through the use of recurrent neural networks
or Bayesian inference. [14] However, it has yet to be shown
how such a dynamic time could be algorithmically integrated
and thus validated.

Contributions

In this paper,wepropose an approach for optimizing the auto-
matic classification of the STN from intra-operative MER
which can accelerate the analysis by reducing the amount of
MER signal acquired. The reduction in surgical time is intu-
itively beneficial for the hospital, as it can reduce the cost
of the intervention, the risk of infection and the subsequent
patient recovery time. We propose and validate a simple ‘lis-
tening algorithm’ for adapting the amount of MER signal
provided to an underlying classification model. This model
relies on receiving signal in small chunks which are then
provided to the underlying classifier, receiving an updated
classification. If the classification results maintain a particu-
lar level of confidence for a particular length of time, the only
parameters of the proposed method, the listening algorithm
produces a final binary classification, thus terminating the lis-
tening time early. By varying these two parameters, we have
shown how accuracy and efficiency can be effectively traded-
off in this framework and show how it can largely improve
the efficiency of DBS electrode positioning by reducing the
amount of time needed to collect the intra-operative MER
signals. Analysis of the dynamics of the listening algorithm
over time also give insight into how the underlying machine
learning methods could be improved in a way that could
directly impact their use.
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Methods

Micro-electrode recording database

The data used in this study were collected at the London
Health Sciences Centre atWestern University Hospital (Lon-
don, Canada), including 57 Parkinson’s Disease patients
undergoing a single or bilateral deep brain stimulation inter-
vention. Micro-electrode recording signals were recorded
through five channels (anterior, posterior, medial, lateral and
central), using a Leadpoint 5 recording station (Medtronic).
A preoperative target was defined by magnetic resonance
imaging before surgery, andmicro-electrode recordingswere
captured from 10.0mm to 4.0/5.0mm after target estima-
tion. For each record, sampling was made at 24kHz (8-bits),
amplified (gain: 10,000) anddigitallyfiltered (bandpass: 500-
5000Hz, notch: 60Hz). The use of these data was led by the
collaborative agreement covered by ethical clearance DSA
109045, and was supported by by the Research Ethics Board
at the University of Western Ontario (REB # 109045).

TheMER database contains 11,162 signals, each contain-
ing 9 seconds of recording and have been annotated by an
expert neurosurgeon as being either within the STN (2,574
signals) or outside of the STN (8,588 signals). Due to the
class imbalance, an oversampling method was designed to
increase the amount of the under-represented class. There-
fore, a single random second of recording was use per ‘OUT’
annotated signal, compared to three non-overlapping random
seconds of recordings for ‘IN’ annotated signals, leading to
8,588 ‘OUT’ against 7,722 ‘IN’ samples.

During training, MER samples were grouped by patient
(i.e. patients, rather than signals, are divided into training and
testing sets) in order to avoid any data leakage and to ensure
that evaluation is performed only on unseen patients data.
Tenfold cross-validation was performed over the 57 patients,
consisting in ten distinct training initializations. For each rep-
etition, onefold is used only for model evaluation with the
remaining ninefolds used for model training. The evaluation
metrics are then averaged over the repetitions. For the train-
ing folds, oversampling of the ‘IN’ class was used to address
class imbalance. For evaluation, metrics were specifically
chosen that account for this lack of class balance.

Adaptive listening time

TheMER listening algorithm, shown in Algorithm 1, is used
to determine the final prediction for a given signal. This algo-
rithm listens to the output of the neural network (P), counting
the number of consecutive times that it is under a particular
threshold α (which indicates a confident conclusion that the
signal comes from outside the STN) or above the threshold
1−α (which indicates a confident conclusion that the signal
comes from inside the STN). After a pre-determined num-

Algorithm 1: MER Listening Algorithm.
Data: P[t] = P(t)(X = ‘IN’) , α ∈ (0, 1), patience > 0
Result: Final prediction: prediction ∈ {‘None’,‘OUT’,‘IN’},

Termination time: t where patience ≤ t ≤ length(P)

begin
prediction ← ‘None’;
C‘OUT’ ← 0;
C‘IN’ ← 0;
for t = 1 → length(P) do

/* If we are ‘certain’, add to the
number of seconds above/below
threshold */

if P[t] < α then
C‘OUT’ ← C‘OUT’ + 1;
C‘IN’ ← 0;

else if P[t] > 1 − α then
C‘IN’ ← C‘IN’ + 1;
C‘OUT’ ← 0;

else
C‘OUT’ ← 0; C‘IN’ ← 0;

/* Determine if we can terminate early
*/

if C‘OUT’ = patience then
prediction ← ‘OUT’;
break;

else if C‘IN’ = patience then
prediction ← ‘IN’;
break;

end
return prediction, t

end

ber of this conclusions is made, the algorithm is permitted to
terminate early with a prediction. Else, the algorithm returns
‘None’ which means a longer listening time would still be
required. Given the retrospective nature of this study, ‘None’
is a valid result of this algorithm, as we do not have the capa-
bility to acquire more signal if Algorithm 1 does not return a
positive or negative prediction in the 9 seconds. However, in
clinical use, the algorithm could always be givenmore signal,
which is often the case in regions along the boundary of the
STNwhere it is difficult, even for trained neurophysiologists,
to confidently determine the electrode location.

Underlying Bayesian and neural network
architectures

The first network used is a reproduction of SepaConvNet
(SCN), the convolutional neural network proposed by Peralta
et al. [16]. The signals undergo some preprocessing in order
to remove any artefacts related to the acquisition, clipping
its amplitude to be within [-249:250]. A short-term Fourier
transform algorithm was used with a Hann window of 512
samples and a hop length of ten samples resulting in a spec-
trogram with 21,600 time points by 257 frequency bands.
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Each frequency band is then normalized to further remove
artefacts using approximate min–max scaling with the 95th
and 5th percentiles as the maximum and minimum values.
The signals are then fed into a convolutional neural network
as shown in Fig. 1 which classifies them into either ‘IN’ (the
network output being close to 1) or ‘OUT’ (the network out-
put being close to 0). The benefit of this network is that the
amount of signal used is relatively short and can be processed
almost in real-time, meaning that the predictions given by
SepaConvNet for each time point can be used.

In order to extend SepaConvNet which process indepen-
dently one second spectrograms, the Bayesian framework
presented by Martin et al. [14] was also reproduced. This
method is based on Bayes’ Theorem, and update the proba-
bility of the signal arising from the STN given consecutive
predictions from SepaConvNet. The general formula is pre-
sented by the authors in the following form:

P(t)(X = p) ∝ P(t−1)(X = p) × P( f(t)|X = p) (1)

X the electrodes location as either ‘in’ or ‘out’
of the STN.

p the classes to be distinguished, specifically
{in, out}.

t the length of MER used, i.e. an integer in
the range [1..9].

P(t)(X = p) is the probability distribution of X , given
past predictions up to and including time t .

P( f(t)|X = p) is the probability of SepaConvNet
generating some feature at time t
(represented by f(t)) conditioned on the
anatomy the MER arose from.

Equation 1 thus allows to obtain for each successive lis-
tening second a prediction dependent on the behaviour of
the underlying: P( f(t)|X = p), associated with the prior
probability calculated at time t − 1, P(t−1)(X = p). At the
initialization, the prior term is calculated according to the
ratio of the classes within the validation data. Two defini-
tions of the term f(t) proposed by Martin et al. have been
re-implemented in the framework of this study:

1. A simple Bayesian extension of SCN, which uses the non-
thresholded SepaConvNet output as an indication of the
certainty of the network. In this case, f(t) ∈ [0, 1], and
P( f(t)|X = p) density is computed over a GaussianMix-
tureModel which models SepaConvNet output according
to each class. With two Gaussian components per class,
this approach adds 12 parameters to SepaConvNet.

2. An advanced Bayesian extension of SCN, which also com-
putes P( f(t)|X = p) using a Gaussian mixture model to
represent the probability distribution of the nonnegative

activation vector from the second to last layer SepaCon-
vNet, with four components per class. This architecture
increases the number of parameters by 8,456 beyond that
of SepaConvNet.

Evaluation system

For each network, α and patience terms were set by using
a GridSearch algorithm over validation data. This learn-
ing method is used to refine the parameters of a predictive
model, by trying all combinations of its parameters passed
in arguments, and by associating a prediction score to each
combination. GridSearch was used for incremental values of
0.025 for α ∈ (0, 0.5), and patience domain was described
as follows: 0 < patience ≤ 9.

Evaluationmetrics

At any given time-point, the current prediction of Algo-
rithm 1 is one of ‘None’ (indicating no certain result), ’Out’
(indicating that the signal arose from outside the STN) and
’In’ (indicating that the signal arose from inside the STN).
Because of the ternary, rather than binary, nature of the
classification problem, there are four metrics that should be
evaluated:

SEN S = True Positive
Positive SPEC = True Negative

Negative

M I SS = False Negative
Positive FALLOUT = False Posi tive

Negative

(2)

Sensitivity (SENS) and specificity (SPEC) are measures
of positive quality—how well the network correctly clas-
sifies signals, whereas the miss rate (MISS) and fall-out
rate (FALLOUT) aremeasures of negative quality—how fre-
quently the network mis-classifies signals. It should be noted
that classifying a signal as ‘None’ lowers all of these rates,
neither correctly classifying nor incorrectly classifying a sig-
nal. Thus, to take into account both positive and negative
quality, we use a balanced ternary quality (BTQ) with the
formula:

BT Q = 1

2
(SEN S + SPEC − MI SS − FALLOUT )

(3)

This formula has several advantages including being inher-
ently class balanced with a random classifier, or a classifier
not producing any predictions, having an expected BTQ of
0. Additionally, if there are no ‘None’ predictions, there is
a relationship between the BTQ and the balanced accuracy
(BACC), specifically BT Q = 2 × BACC − 1.
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Fig. 1 SepaConvNet architecture

Results

The parameter space for each of the three comparative meth-
ods has been explored using a grid search and the resultant
BTQ metric is shown in Fig. 2. Note that the colour scale
is the same for each subfigure and has been scaled to reflect
the maximal performance of the methods investigated. The
performance of the advanced Bayesian SepaConvNet is con-
sistently higher than the alternatives.

In order to investigate the behaviour of thesemethods over
the course of the signal, the optimal patience and α param-
eters were defined independently for each method, and the
behaviour of each approach is visualized in Fig. 3.

To further illustrate the performance of Algorithm 1 using
different underlying methods, Fig. 3 presents the evolution
of validation metrics across the database of 5,584 signals.
It should be noted that the bars in Fig. 3 are calculated
over the signals predicted at the given time-point, and thus
SEN S + MI SS = SPEC + FALLOUT = 1. Similarly,
the number of signals classified at each time step is shown
using a logarithmic scale as approximately 90% of signals
are classified as soon as possible for all of the proposedmeth-
ods and a linear scale would render subsequent time points
difficult to distinguish.

As shown in Fig. 2, the advanced Bayesian method shows
the best performance among the threemethodologies studied.

In order to determine if early termination has a negative effect
on classification accuracy, the advanced Bayesian extension
was evaluated both with and without early termination. The
hypothesis was that the same method but with access to the
full signal would perform better than the same method with-
out said full access. However, this effect was very slight that
early termination decreased the BACC score from 83.5%
without early termination to 83.0% with early termination.
This is despite having unclassified signals, which BACC, a
binary classification metric, considers to all be incorrectly
classified. Although this improvement is not statistically
significant (under a paired Student’s t test across all 57
patients in the cross-evaluation), it still indicates that early
termination very likely does not have a negative effect on
classification performance.

Discussion

The evaluation of the SepaConvNet neural network architec-
ture has already highlighted the relevance of this data-driven
methodology for the recognition of patterns within a MER
signal [16]. In order to further optimize prediction perfor-
mance, the SepaConvNet extension then focused on the
iterative integration of an arbitrary number of seconds of
MER to increase the certainty of the underlying neural
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Fig. 2 Final BTQ of the three comparative methods at the end of the 9 second MER signal averaged across all k folds of cross-validation. Adaptive
Listening time with SepaConvNet (a), the Simple Bayesian Extension (b), and the Advanced Bayesian Extension (c)

network [14]. The algorithm presented in this study aims
at dynamically establishing the listening time required to
optimize the trade-off between listening shortening and pre-
diction quality. This work shows that the use of the presented
early stopping algorithm does not alter the overall quality
of prediction, indicating that it is possible to stop listen-
ing prematurely for some signals, without penalty, and thus
accelerate the task of MER identification. Furthermore, the
early stopping listening algorithm could also be extended
to any classification approach based on the use of intra-
operatives features. [6,10]

In terms of interpreting the algorithm parameterization,
particularly via Fig. 2, there are two dynamics to take into
account: the misclassification rate and the non-prediction
rate. For example, as the patience increases, it should have
strongly increase the non-prediction rate (i.e. more signals
are missed due to insufficient MER length) with a weaker
negative effect on the misclassification rate (i.e. fewer sig-
nals near the boundaries are misclassified as they need to
stay on the same side of the boundary for longer). Similarly,
as α increases, Algorithm 1 becomes more forgiving, thus
increasing the misclassification rate and lowering the non-
prediction rate.

For the patience parameter, one consistent result can be
seen across all methods: at extremely high patience values,
such as 7, 8 or 9, the BTQ swiftly decreases at low values
of alpha. This is likely because the signal is simply not long
enough for such confidence levels to have been maintained
for such an amount of time.

For SepaConvNet with early stopping, the effect of
the alpha parameter seems to dominate the algorithm’s
behaviour, being sensitive to it at all values of patience. This is
likely because the output of SepaConvNet, as noted by Mar-

tin et al. [14] is not a true likelihood reflecting the model’s
underlying certainty and thus the range of values is reduced
rather than full ranging between 0 and 1.

For the Bayesian methods, the dynamics of early termina-
tion are somewhat different due to the convergence behaviour
of said methods, i.e. that they converge towards either 0 or
1 relatively quickly for the majority of signals [14]. At low
values of alpha, lower values of patience tend to be optimal,
as both methods take time to reach said confidence levels.
As the value of alpha increases and this minimal conver-
gence time therefore lessens, we see that middling patience
values become preferable, indicating that there is, in fact,
a population of signals that originally start to converge in
one direction and then ’change their mind’ and ultimately
converge to the opposite. This interesting behaviour raises a
number of hypothesis regarding how frequently characteris-
tic signal patterns occur which could inform surgical practice
in terms of minimum listening times for each of the ‘IN’ and
‘OUT’ classes.

Particular attention has been given to the advanced
Bayesian extension, as it was the best performing in both
this study and a previous study [14]. As shown in Fig. 3c,
it is possible to reduce the average listening time for MER
signals by more than half, which is a strong argument for
improving the quality of clinical support when using a real-
time prediction tool. In addition, the prediction quality of
MER signals within the first stop timestep demonstrates that
the early stopping algorithm is capable of highlighting sig-
nals with “simple” discriminative features, for which it
provides a higher prediction score than that of the underly-
ing Advanced Bayesian Extension given the entire signal,
increasing the balanced accuracy from 83.5% to 85.45%
for those signals. Therefore, this approach would sepa-
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Fig. 3 Distribution of signals
and classification metrics with
respect to the listening time
determined by the Early
Stopping algorithm. Each
column pools the set of MERs
across the database associated
with the same listening duration
by the early stopping algorithm.
The red line represents the
evolution of the average BTQ
score for each possible stopping
time observed. The three
comparative methods were
evaluated using k-fold
cross-validation to determine
the optimal alpha and patience
parameters. a Adaptive listening
time with SepaConvNet
(patience = 4; α = 0.5), b
Adaptive listening time with
simple Bayesian extension
(patience = 2; α = 0.225)), c
Adaptive listening time with
advanced Bayesian extension
(patience = 4; α = 0.18)

rate the simple cases for identification from the complex
ones. The complexity of identification may be explained
by the nature of the physiological boundaries which are
not clear-cut, and therefore potentially difficult to inter-
pret. Lastly, this approach is designed to work with signals
that are not denoised. Numerous sources of mechanical
and physiological noise have been characterized for electro-

physiological signals [1,8,11], which can render the signal
more complex and difficult to classify. In order to inte-
grate this work in a surgical context, this algorithm could
be used to identify simple signals in a much shorter time,
and propose longer signal acquisitions and flag more com-
plex signals.
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Limitations and future work

Despite the improvement in predictions for all signals that
follow a rapid convergence towards certainty (i.e. an output
of 0 or 1), which can be seen in the first column of each sub-
figure in Fig. 3, signals that are classified after the minimum
amount of time show a noticeable decrease in accuracy. This
is likely because all signals that are completely unambiguous
are classified at the very first opportunity, with only the more
difficult signals remaining.

Therefore, improving the predictive model’s accuracy
specifically for this family of signals remains a priority for
future work in terms of the underlying neural network, its
Bayesian extensions, and the early termination algorithm.
One potential avenue for this is to integrate more information
related from the DBS planning stage (i.e. the rough location
of the STN and the desired electrode trajectories determined
from pre-operative MRI) which would likely allow for more
unambiguous signals occurring further away from the bound-
aries of the STN to be quickly classified based primarily
on depth information, leaving the neural network to learn
distinctive patterns for the more difficult boundary cases
rather than the more frequent easier cases. Depth informa-
tion has been used in many automatic MER signal analysis
approaches [4,15,24], and the significant improvement of
predictions resulting from its inclusion has recently been val-
idated [4].

Conclusion

Through this study, we proposed a listening algorithm for
MER signal classification, capable of adapting to the level
of certainty of the predictions made by a predictive model.
The purpose of this algorithm is to determine if listening to
additional MER signal would improve the classification of a
particular MER signal based on an underlying model. Due
to the simplicity of this algorithm (with only two param-
eters, both of which are bounded) we could evaluate and
explore a variety of configurations both in terms of the algo-
rithm’s parameter space and the underlyingmachine learning
model performing the predictions. The evaluation of this
system has highlighted the performance of the advanced
Bayesian extension of SepaConvNet, which seems to be
well-adapted to the logic of the listening algorithm, outper-
forming comparative methods, while being fairly insensitive
to parameterization. In terms of performance, the combi-
nation of the advanced Bayesian method with the early
stopping algorithm does not reduce the prediction quality
compared to using the entire acquired signal, indicating that
such efficiencies can be found without worrying as to incur-
ring speed-vs.-performance tradeoff. Thus, the simple early
termination algorithm proposed in this paper would be, as

an adjunct to deep learning, a relevant implementable and
low-risk addition, allowing for an improvement in surgical
workflow efficiency.
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