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Abstract—Deep brain stimulation (DBS) is an effective therapy as 
an alternative to pharmaceutical treatments for Parkinson’s disease 
(PD). Aside from factors such as instrumentation, treatment plans, 
and surgical protocols, the success of the procedure depends 
heavily on the accurate placement of the electrode within the 
optimal therapeutic targets while avoiding vital structures that can 
cause surgical complications and adverse neurologic effects. 
Although specific surgical techniques for DBS can vary, 
interventional guidance with medical imaging has greatly 
contributed to the development, outcomes, and safety of the 
procedure. With rapid development in novel imaging techniques, 
computational methods, and surgical navigation software, as well 
as growing insights into the disease and mechanism of action of 
DBS, modern image guidance is expected to further enhance the 
capacity and efficacy of the procedure in treating PD. This article 
surveys the state-of-the-art techniques in image-guided DBS 
surgery to treat PD, and discusses their benefits and drawbacks, as 
well as future directions on the topic. 
 

Index Terms—Deep brain stimulation, surgical navigation, 
neurosurgery, Parkinson’s disease, image processing, MRI 

I. INTRODUCTION 
FFECTING more than 10 million people worldwide, 
Parkinson’s disease (PD) is a chronic and progressive 
neurodegenerative disorder. Although it is still primarily 

characterized by related motor symptoms, including tremor, 
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muscle rigidity and bradykinesia, the associated non-motor 
symptoms are being increasingly recognized. In addition to 
pharmacotherapy, deep brain stimulation (DBS) is a surgical 
treatment that can improve dopamine-related motor 
dysfunctions of the disorder, by implanting electrodes to 
stimulate designated regions in the brain. Often, intra-
operative micro-electrode recording (MER) is performed to 
confirm or refine the therapeutic target determined in the pre-
surgical plan before the DBS lead is placed and secured in 
place. Here, an illustration of the DBS system is shown in 
Fig.1. With the more commonly employed stimulation targets 
of the subthalamic nucleus (STN) and globus pallidus interna 
(GPi) to treat PD, the ventral intermediate nucleus (Vim) of 
the thalamus is an option for tremor-dominated PD.  

 
Fig. 1. Illustration of the deep brain stimulation (DBS) system. 

In DBS surgery, the electrode must be inserted through a bur-
hole to reach the optimal locus without damaging vital 
anatomy (e.g., blood vessels) or stimulating other brain 
structures that can induce adverse responses [1]. The 
procedure has three main challenges. First, the DBS targets are 
often relatively small and poorly visualized using conventional 
medical imaging techniques for neurosurgical planning. 
Second, to avoid complications and unwanted outcomes, DBS 
lead insertion planning needs to consider various medical 
images that reveal different physiological information, which 
can be challenging and time-consuming for the surgeon to 
navigate. Finally, intra-operative tissue shift and post-
operative DBS lead migration can occur, and intra-operative 
refinement of the stimulation target from pre-surgical planning 
is often needed. Since the inception of DBS, image guidance 
has played important roles to tackle these issues from three 
major directions, including surgical targeting, navigation, and 
monitoring. In targeting, many specialized MRI techniques 
and computational methods have been developed to reveal the 
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location and geometry of the surgical targets, especially for 
the STN, and more recently, to ensure optimal functional 
outcomes via incorporating functional and neural connectivity 
data. In general, based on the approaches used, the targeting 
methods can be grouped into structural and functional 
categories. The structural category can be further organized 
into indirect and direct methods. For surgical navigation, 
multiple neuronavigation software packages, with graphical 
rendering of surgical data, feature integrated image-processing 
algorithms, and automatic lead trajectory planning have been 
proposed to facilitate both pre-surgical planning and post-hoc 
outcome analysis. Lastly, for DBS monitoring, imaging and 
computational methods have been pursued to ensure correct 
electrode placement, as well as potentially monitoring 
functional responses to the stimulation and hemorrhage. 

Image-guidance in DBS surgery is a highly multi-faceted topic 
that involves image acquisition, image processing, 
computational models, and physiological modeling of the 
tissue and brain function. The advancement of DBS image 
guidance is imperative to ensure and possibly extend DBS 
outcomes while simultaneously offering needed insights 
regarding our brain circuitry and the true potential of DBS, as 
well as providing the knowledge for other therapies (e.g., 
focused-ultrasound surgery). This review primarily focuses on 
current methodological developments of image guidance for 
DBS to treat PD, in the three aforementioned aspects. Since 
more existing methods are devoted to surgical targeting, the 
review of this aspect is proportionally longer than the other 
two. A schematic of this review is shown in Fig. 2. 
 

 
Fig. 2. Schematic of different components reviewed in image-
guidance for DBS surgery to treat Parkinson’s disease. 

II. STRUCTURAL INDIRECT TARGETING 
Indirect targeting approaches infer the centroid or geometry 

of the nucleus either from adjacent anatomical features, or by 
fitting an atlas to an individual’s anatomy as represented in 
pre-operative scans (e.g., T1w MRI) that fail to sufficiently 
visualize the target. This approach was used historically before 
the era of modern imaging, and to this day is still often used as 
a first approximation of the target location. 

A. Coordinate-based approaches 
Conventionally, the locations of the surgical targets are often 
inferred from their spatial coordinates in relation to more 
easily identifiable anatomical landmarks, as defined in well-
established atlases, such as those from Talairach [2] or 
Schaltenbrand atlases [3]. Among different coordinate 
systems, the mid-point (i.e., middle commissure or MC) of the 
line connecting anterior commissure (AC) and posterior 
commissure (PC) (see Fig.3) is the most popular landmark to 
help locate the surgical targets, such as the STN. Efforts were 
therefore, made to improve the accuracy, consistency, and 
automation of AC and PC identification [4, 5] through multi-
template registration and local image feature learning as well 
as developing open standards for placing these features [6]. To 
adjust for individual variability, the coordinates are usually 
scaled by a factor that normalizes AC-PC line lengths between 
the patient’s anatomy and the atlas employed, and some also 
use additional adjustments based on considerations, such as 
the third ventricle width [7]. However, there remains a lack of 
consensus among the specialists [8].  

 

Fig. 3. AC-PC lines and MC points defined in Talairach atlas space 
(Left) and Schaltenbrand atlas space (Right), shown in the mid-
sagittal plane of the T1w ICBM152 template. Note that the 
differences in the definition of AC-PC, and thus the reference 
coordinates to locate surgical targets. 

B. Structural brain atlases and image registration 
Distinct from coordinate-based targeting that only offers 
points in 3D, full geometry and richer anatomical context can 
be obtained for the surgical target, by mapping structural brain 
atlases to the patient’s anatomy, using volume-to-volume 
image alignment. Besides the more recent digitized Talairach 
[2] or Schaltenbrand atlases [3], a number of brain atlases 
have been released to benefit DBS planning. As a starter, 
several subcortical atlases have been developed from 3D 
reconstruction of histological annotations [9-11], and were co-
registered to single-subject T1w MRI templates. For better 
anatomical representation, atlases averaged from a group of 
subjects have become a standard practice. In 2013, Haegelen 
et al. [12] built a PD-population-averaged atlas (named 
ParkMedAtlas) with manual segmentation of 7 pairs of 
subcortical structures. Xiao et al. [13, 14] constructed the MNI 
PD25 atlas, which is co-registered with a histological atlas 
containing 123 structure labels and the BigBrain dataset [15, 
16] (Fig.4a). More recently, Inglesias et al. [17] published a 
probabilistic atlas of the human thalamic nuclei with ex vivo 
MRI and histology of 6 elderly subjects, and the new CIT168 
atlas (Fig. 4b&c) was created from 168 young healthy subjects 
by Pauli et al. [18]. Benefiting from enhanced tissue contrast 

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on December 17,2020 at 23:51:54 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2020.3006765, IEEE
Transactions on Biomedical Engineering

of ultra-high field 7T MRI, Keuken et al. [19] and Wang et al. 
[20] proposed multi-contrast averaged brain atlases with 
probabilistic maps of the basal ganglia structures using healthy 
subjects, and the latter was applied prospectively in surgical 
cases [21]. Besides anatomy, atlases that include functional 
sub-divisions of target nuclei were also introduced, intended to 
better pin-point the therapeutic subregion. In this vein, Silva et 
al. [22] and Accolla et al. [23] provided parcellation for the 
GPi and STN, respectively. Based on the atlas of Chakravarty 
et al. [11], the DISTIL atlas [24] sub-divides the STN and GPi 
into 3 functional zones in the MNI152 template space.  

Atlas-to-MRI registration strategies can impact the quality of 
targeting. In indirect targeting, such registration relies only on 
T1w MRI. Bardinet et al. [25] used the patient’s original and 
mirrored MRI to improve the atlas registration accuracy. Duay 
et al. [26] proposed an active-contour-based atlas registration 
for STN targeting. Using the Colin27 template [27] as a 
medium, Chakravarty et al. [28] employed pseudo-MRI 
derived from digitized histological data to map the atlas to 
individual patients. Finally, different deformation models and 
publicly available registration software were assessed by 
Chakravarty et al. [29] and Ewert et al. [30], confirming the 
need for refined nonlinear warping.  

III. STRUCTURAL DIRECT TARGETING 
Direct targeting locates the surgical targets using MRI 
techniques and the associated image processing methods to 
directly visualize them. Among these, 2D fast spin-echo (FSE) 
T2w MRI has the longest history in the clinic. However, such 
images are slow to acquire, making it difficult for the PD 
patients to tolerate. Thus, often highly anisotropic resolution 
(3~5 mm axial slice thickness) or just a slab of the brain is 
obtained. Newer MRI sequences primarily aim to enhance the 
contrast of the nuclei, image quality (e.g., signal-to-noise ratio 
and image resolution), or scanning efficiency. Full summaries 
of MRI sequences and nuclei segmentation methods are 
included in Tables S1 & S2 of the supplementary material. 

A. Inversion recovery imaging 
Inversion recovery (IR) imaging that reduces signals from 
designated tissues can boost the contrasts of subcortical 
structures. Ishimori et al. [31] proposed a 3D phase sensitive 
IR sequence with an image contrast optimization to visualize 
the STN. Sudhyadhom et al. [32] proposed the Fast Gray 
matter Acquisition T1 Inversion Recovery (FGATIR) image to 
highlight the boundaries of subcortical structures and improve 
atlas fitting, demonstrating that FGATIR is superior to T2-
FLAIR in providing delineation between nuclei. Later, Tanner 
et al. [33] proposed the fluid and white matter suppression 
(FLAWS) sequence to obtain a FGATIR-like scan with co-
registered T1w MRI in one scan session.  Kitajima et al. [34] 
compared the FSE T2w and fast short inversion time IR 
(FSTIR) images, and concluded that it is easier to differentiate 
the STN from the adjacent SN in FSTIR images. Later, 
Nowacki et al. [35] evaluated the application of the modified 
driven equilibrium Fourier transform (MDEFT) sequence for 
depicting the GPi, though it was shown later that 

magnetization transfer (MT) maps can better visualize the GP 
than MDEFT [36]. 
 

B. Susceptibility-weighted imaging 
Susceptibility-weighted imaging (SWI) enhances the contrast 
of the subcortical structures by taking advantage of their rich 
iron deposition. A typical SWI sequence produces a T2*w 
MRI, a phase image, and a magnitude-phase-fusion contrast. 
While the magnitude-phase-fusion image was originally 
intended for venography, the sequence has subsequently been 
customized to visualize the STN for DBS. Vertinsky et al. [37] 
optimized the scanning parameters of single-echo SWI images 
to best visualize the STN, and reported that the phase image is 
the best for the purpose. T2*w MRI exhibits high contrast for 
subcortical structures, but also has evident susceptibility 
artifacts, which requires additional T1w MRI in surgical 
planning and may affect image registration quality. Xiao et al. 
[38] proposed a 10-echo FLASH sequence that produces 
different contrasts, including T1w and T2*w MRIs, whose 
image quality were enhanced through averaging adjacent 
echoes and optimizing scanning parameters. Alternatively, 
Volz et al. [39] attempted to recover the signal loss from 
susceptibility artifacts, by estimating pixel-wise signal loss 
and adaptively fusing multi-echo data. Finally, Wu et al. [40] 
proposed an inverse double-echo steady-state (iDESS) 
technique to depict the midbrain nuclei and reduce 
susceptibility signal loss.  

 
Fig. 4. (a) The STN and GPi rendered in 3D with other basal ganglia 
structures in the histological BigBrain atlas [15, 16]; (b) GPi is 
shown in axial view of the T1w CIT168 atlas [18]; (c) STN is shown 
in the coronal view of the T2w CIT168 atlas. 

C. Quantitative imaging 
Quantitative MRI techniques can reveal the microstructural 
architectures of brain tissues by deriving their intrinsic MRI 
properties, including T1, T2, T2*, susceptibility, and 
magnetization transfer (MT) parameters. Therefore, these 
quantitative maps offer the opportunity to better describe the 
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boundary between adjacent tissue types. Guo et al. [41] 
introduced the driven equilibrium single pulse observation of 
T1 and T2 (DESPOT1 and DESPOT2 [42], respectively) for 
DBS implantation. Helms et al. [36] proposed a novel, semi-
quantitative magnetization transfer (MT) imaging to improve 
contrast of basal ganglia structures, and discussed its 
feasibility in anatomical localization for DBS. Aside from the 
standard contrasts from the SWI sequence, T2* or R2* 
(1/T2*) maps [43] and later quantitative susceptibility maps 
(QSMs) [44] can also be derived to help improve the 
visualization of the STN and GP.  
 

D. Ultra-high field MR imaging 
Ultra-high field (>3T) MRI can boost the sensitivity, 
resolution, and signal-to-noise ratio of functional and 
anatomical images, and thus can offer more exquisite 
anatomical details. Abosch et al. [45] obtained T2w and SWI 
scans at 7T, and showcased the superior ability to effectively 
improve the identification of the GPi, STN, and Vim. Duchin 
et al. [46] found that T2w MRI at 7T has minimal distortion 
within the central part of the brain compared with at 1.5T, and 
thus is suitable for clinical use. Cho et al. [47] compared 
T2*w MRI at 1.5, 3, and 7T for visualizing the STN, while 
Deistung et al. [44] compared the contrast of subcortical 
structures in QSM, T2*w, phase, and R2* images at 7T, and 
concluded that QSM demonstrates the highest anatomical 
detail.  

E. Deep brain nuclei segmentation 
These aforementioned MRI techniques provide the 
opportunity for automatic nucleus segmentation to facilitate 
computer-assisted DBS planning and pathological studies of 
PD. Thus far, a number of groups have proposed and validated 
their methods, which can be categorized into atlas-based 
(single-atlas propagation and multi-atlas label fusion), model-
based, and deep learning-based methods. Distinct from atlas-
based segmentation in indirect targeting, the methods in this 
section involve MRI scans that display the nuclei of interest 
with sufficient contrast for registration or atlas selection. With 
a larger volume and visibility in T1w MRIs, segmentation of 
the GPi is more commonly reported. As for the STN 
segmentation, Haegelen et al. [12] compared methods 
including single atlas propagation with different registration 
algorithms (ANIMAL [48] and SyN [49]) and a non-local 
means label-fusion method [50] to segment subcortical regions 
using high-resolution sectional T2w FSE MRI at 3T. Their 
comparison offered the best results with a 0.64 Dice score 
using the ANIMAL algorithm. Also with 3T data, Xiao et al. 
[51] employed T2w pseudo-MRI to improve histological atlas 
registration to segment the STN. Later, to resolve the 
drawbacks of single-atlas propagation [52], the same group 
proposed label fusion segmentation methods for the midbrain 
nuclei, using fuzzy majority-voting on T2w MRI [52] and 
multi-contrast non-local means on SWI data [53], with the 
Dice score ranging 0.74~0.90 for their approaches. With 
respect to model-based approaches, Li et al. [54] used a band-
limited level set to segment the STN on 3T T2w MRI. At 7T, 
Visser et al. [55]  used both shape and multi-spectral intensity 
(QSM, T2w, T2*w, and fractional anisotropy map) modeling 

to segment the midbrain nuclei, while Kim et al. [56] 
employed regression models to identify the STN in 1.5T T2w 
MRI based on a 7T training set. Most recently, deep learning 
has been employed to identify the STN [57], achieving a Dice 
coefficient of 0.90. Intending to serve a wider community, 
Manjon et al. [58] proposed pBrain, an online processing 
pipeline to segment the STN based on multi-atlas label-fusion 
with multiple scales and features in T2w MRI. 

IV. TARGETING WITH FUNCTIONAL DATA 
Different from the previous two categories that focus on 
providing the centroid or geometry for the anatomy to be 
stimulated, targeting with functional data is centered around 
the concept that targeting a specific functional region within 
the nucleus of interest may provide the maximum symptom 
improvements while minimizing adverse effects. Three 
general categories of functional targeting have been reported: 
probabilistic functional atlas mapping, connectivity-based 
targeting, and machine learning for surgical outcome. A 
summary of all currently available methods is available in 
Table S3 in the supplementary material. 
 
Among the various approaches, the probabilistic functional 
atlas mapping has the longest history. For this type of atlas, 
the locations of the active electrodes, the responses to 
stimulation, and the stimulator settings, are recorded for each 
individual patient. The stimulation locations of a cohort of 
patients with sufficient clinical benefits were deformed to a 
common anatomical atlas, while the influence of the applied 
electric field was modeled by a kernel function. Finally, the 
results were averaged to form a probabilistic representation of 
the “hot spot” to guide loci selection. As the earliest to 
develop such atlases, Nowinski et al. [59, 60] showed that 
DBS planning with their probabilistic functional atlas is better 
than solely relying on an anatomical atlases. Guo et al. [61] 
also presented a probabilistic atlas, built from intra-operative 
data of Finnis et al. [62], and demonstrated the advantage of 
the functional atlas in comparison to other anatomy-based 
approaches [41]. To further improve atlas-to-patient 
registration for stimulation target selection, D’Haese et al. [63, 
64] proposed a multi-template technique for their 
electrophysiological atlas, and reported < 1.75mm mean 
deviation from final implanted location when using the atlas 
for planning. From the same group, Pallavaram et al. [65] used 
spherical kernels instead of more commonly seen Gaussian 
kernels [61] to more accurately reflect the effect of electric 
field in brain tissue.  
 
The second category of techniques utilize brain connectivity 
data, derived from diffusion and functional MRI to locate 
therapeutic neural pathways and sub-regions of nuclei that are 
difficult to visualize in structural MRI. Tractography obtained 
from diffusion MRI has been employed to determine optimal 
electrode placement within sub-regions of the STN [66, 67] 
and GPi [68]. Since the Vim nucleus of the thalamus is 
difficult to visualize on structural images, both tractography 
[69] and task-based functional MRI [70] have been employed 
to help locate it. More specifically, Sammartino et al. [69] 
reported a mean discrepancy of 1.6mm between targeting 
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using tractography and actual surgical choices. The extraction 
of dentatorubrothalamic (DRT) tract using tractography by 
obtaining tracts passing the dentate nucleus, thalamus, and 
motor cortex has been proposed as an alternative image-based 
target for tremor [71]. Compared with the first category of 
functional targeting that relies on the collection of previous 
target locations, connectivity-based targeting, often referred to 
as connectomic DBS, links the therapeutic benefits with 
activation of specific neural pathways.  
 
Lastly, the new data-driven approaches rely on machine 
learning to predict surgical outcomes at intended stimulation 
locations. Horn et al. [72] used brain connectivity data and 
linear regression models to calculate the surgical outcomes 
with an average 15% error margin for Unified Parkinson’s 
Disease Rating Scale (UPDRS) motor score improvements. 
Later, Baumgarten et al. [73] trained an artificial neural 
network model with 3D coordinates and levels of electric 
current to predict whether selected stimulation loci induce 
therapeutic benefits and side effects, obtaining the sensitivity 
of 93.07% and 73.47%, respectively. Similarly, Lin et al. [74] 
newly proposed a random forest classifier to differentiate 
ineffective vs. effective targets, but using instead the mean 
fractional anisotropy and tractography streamline fraction of 
the stimulation site within the STN to the rest of the brain. 
Their approach achieved a classification accuracy of 84.9%. 

V. DBS NAVIGATION SOFTWARE & TRAJECTORY PLANNING 
Surgical navigation software provides the needed interface to 
visualize complex clinical information, preprocess imaging 
data, and possibly devise surgical plans, as well as perform 
post-hoc outcome analysis. Aside from commercial software, 
a number of DBS navigation software platforms have been 
developed for research purposes. The summary of the various 
current research-based navigation systems is listed in Table S4 
of the supplementary material. 

As the first of its kind, CranialVault [75] packaged automatic 
image processing tools, data visualization, and functional 
target selection [18] into one user interface. PyDBS [76] and 
IBIS NeuroNav [77] also offer surgical data visualization for 
planning DBS. With the first containing streamlined workflow 
to segment and register multi-modal scans, both of them 
incorporate efficient and automatic trajectory planning tools 
[78-82] (see Fig. 5) as software plug-in extensions. Primarily 
to help analyze post-surgical impacts, PaCER [83] and 
DBSproc [84] were built to more accurately reconstruct the 
electrodes and offer tractographic analysis of surgical targets. 
On the similar note, LeadDBS [85] provides a platform to 
conduct statistical analysis for DBS procedures with integrated 
registration tools, an electrode reconstruction function, and 
integrated brain atlases, including both structural and 
connectomic types.  

A safe trajectory for DBS electrode insertion should consider 
multiple criteria, including but not limited to the distance to 
the optimal stimulation target while avoiding cerebral 
vasculature, ventricles, and structures, such as posterior limb 
of the internal capsule, that can induce adverse effects. 

However, proposing viable insertion paths by simultaneously 
considering all these conditions may impose a heavy cognitive 
demand for the surgeon, making the process arduous and time-
consuming. Therefore, several automated trajectory planning 
algorithms have been proposed by framing the task as 
optimizing cost functions that represent these criteria 
mathematically. 

 

Fig. 5. Demonstration of the automatic DBS trajectory planning 
software proposed by Essert et al. [80, 81] in a case of STN 
stimulation (Courtesy of Dr. Caroline Essert, University of 
Strasbourg) 

While the earlier versions [86, 87] of these algorithms 
demonstrated the feasibility of such optimization frameworks 
with limited criteria, more recent approaches [78-81] 
incorporated a larger set of constraints, as well as introducing 
new data types into the optimization procedure. From the 
Montreal Neurological Institute group, Bériault et al. [78, 79] 
proposed automated DBS planning using SWI venography to 
ensure surgical safety and introduced a computational model 
for STN DBS stimulation with multiple active electrode 
contacts. In a similar vein, Essert et al. [81] emphasized the 
geometry of the insertion paths in their algorithm, and 
assessed the performance retrospectively. Later, Dergchyova 
et al. [80] further developed the Essert system, allowing the 
cost function to balance both the functional improvement 
predicted by probabilistic efficacy maps and the surgical risks. 
Despite various successes in automated trajectory planning 
algorithms, the strategy to weigh various path planning criteria 
is still largely determined by the users in a trial-and-error 
manner, and no systematic studies have been conducted to 
provide a unified framework to determine the optimal weights.  

VI. INTRA-OPERATIVE AND POST-OPERATIVE MONITORING 
Intra-operative monitoring can ensure the safety and quality of 
DBS, and the technical advancements have made it feasible to 
inspect many crucial factors during surgery, including 
electrode position, brain shift, intra-operative hemorrhage, and 
functional responses to stimulation. This is especially helpful 
for brain shift in DBS, which is able to impact surgical quality 
[88-90] in both intra-operative targeting and post-surgical 
electrode migration. So far, besides more conventional and 
costly intra-operative MRI (iMRI) [91] and intra-operative CT 
(iCT) systems, transcranial sonography (TCS) [92, 93] and 
bio-mechanical modeling [89, 94] have also been reported. 
iCT is typically used to confirm the electrode position, and 
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while it is an accurate equivalent to post-operative MRI 
measurement [90], it lacks soft tissue contrast. Aside from 
electrode position verification, iMRI [91] can provide 
different image contrasts that visualize the surgical target, 
brain shift, and hemorrhage, and perform intra-operative fMRI 
[95] to possibly refine electrode placement and stimulation 
parameters. A more cost-effective modality, 3D TCS was 
tested experimentally to guide DBS electrode placement [93]. 
With a limited accuracy of electrode tip localization [92] due 
to challenges in TCS-MRI fusion and image distortion, the 
method is not yet ready for clinical use. Lastly, finite element 
models (FEMs) [89, 94] have also been demonstrated in 
simulation [89] and clinical case study [94] to improve the 
electrode placement by accounting for brain shift, but further 
developments that allow efficient integration into the clinical 
workflow are needed. 
 
Post-operative imaging is another crucial step to verify final 
electrode position, particularly for potential electrode 
migration, assessment of surgical complications, and 
investigation of physiological impacts of the treatment. Recent 
studies [96, 97] with post-operative structural and functional 
MRI, have revealed the tissue and functional changes after 
DBS surgery. While CT avoids the need for meticulous 
estimation of heat dissipation with MRI in the presence of a 
DBS electrode, the physiological insights offered is limited. 
More specifically, studies [98] have recommended a specific 
absorption rate (SAR) below 0.1 W/kg when planning post-
operative MRI for DBS cases. 

VII. DISCUSSION 

A. Targeting: coordinates, anatomy, and function 
Atlas coordinate-based DBS targeting has a long history in the 
clinic. It assumes that the relative positions and sizes of DBS 
surgical targets, such as the STN, are consistent across 
subjects, and can tolerate minimum or lower quality imaging 
data. Meanwhile, non-negligible anatomical variability across 
subjects [52, 99, 100] has also been reported for the surgical 
target. The choice between the coordinate-based technique and 
direct targeting has been actively debated, largely for 
localizing the STN. While the earlier reports favored the first 
[101], more recent evidence [52, 100] prefer the latter. This 
discrepancy may likely be attributed to the improved image 
quality of MRI scanners, especially in terms of signal-to-noise 
ratio, image resolution, and newer scanning sequences, but 
unfortunately most studies [101] only reported results with 
fairly limited patients, or even healthy cohorts. Notably, the 
initial stimulation locations derived from coordinate-based 
methods and anatomical MRI are usually the estimated 
centroid or geometric center of the nucleus, which is often 
different from the therapeutic target. Inputs from functional 
information at the planning stage can therefore be important. 
Such insights can be made available through brain atlases that 
contain connectivity-based sub-divisions of the nucleus [24], 
probabilistic representation of effective stimulation loci [61, 
65], and group-averaged connectomes [72]. With 
physiological recording [102], we have observed that 
therapeutic regions are not necessarily bounded by the borders 
of a particular anatomy. To push this notion further, functional 

targeting with brain connectivity data, including diffusion and 
functional MRI, allows effective and tailored stimulation of 
nuclei subregions [103] or instead towards white matter 
pathways [71, 104] for targeted symptoms. 
Both indirect and direct targeting methods, and even many 
functional targeting approaches, have relied heavily on brain 
atlases, where significant progress has been made in adding 
super-high-resolution histological data [16], multi-contrast 
MRI [9, 13, 20, 65, 99], unbiased anatomical representation, 
and brain connectivity information [68, 72]. To accurately 
transfer the rich information from the atlases to an individual’s 
anatomy, suitable registration strategies are crucial. As 
anatomical variability in midbrain nuclei was revealed by 
high-quality structural MRI [52, 99], refined non-linear 
registration strategies [29, 30] are needed, and multi-contrast 
registration [16, 51, 72] is recommended for targets that are 
not visible on T1w MRI. Aside from brain atlas customization, 
concerns [105] have also been raised regarding potential 
insufficient representation of individual physiology when 
using group-averaged connectomic atlases for DBS planning. 
Comprehensive investigation is still required to confirm the 
impact of these approaches. 
  
Selecting the appropriate ground truth to assess DBS targeting 
methods is crucial and challenging. Typical references [101] 
to validate DBS planning techniques include final 
implantation locations shown in post-operative scans, intra-
operative recording locations, coordinates shown in 
established atlases, structural MRI, and post-surgical symptom 
improvement. With possible tissue shift and electrode 
migration, stimulation targets determined during and after 
surgery may not overlap, and they may also exhibit an 
inherent bias away from the pre-surgical plans. Although 
symptom improvement appears more meaningful as a ground 
truth, the possibility of alternative candidate targets with better 
outcomes make it difficult to assess prospective cases. 
Surprisingly, some functional targeting approaches [60, 70] 
used atlas coordinates as ground truth, which is not ideal, and 
the differences in validation metrics make it hard to conduct 
cross-method  comparisons. Finally, most reported planning 
techniques focus only on single contact stimulation. Multi-
contact DBS planning, which is more complex to validate, is 
seldom mentioned in the literature. 

B. MR imaging and segmentation of surgical targets 
To date, a majority of the literature on novel structural MRI 
sequences for DBS is dedicated to the STN, for which, 
susceptibility-based contrasts [37, 38, 43, 45, 47], particularly 
7T QSM [44] showed superior results. Most MRI techniques 
surveyed in Table S1 were only developed based on small 
cohorts with primarily healthy subjects. This may affect their 
performance in PD patients, who can exhibit varied 
biochemical features in the brain and are less tolerant to 
relatively long scan sessions. In these novel sequences, typical 
slice thickness is still 2 mm, which is not ideal to accurately 
depict the geometry of the small STN, and is also in contrast 
to the finer isotropic resolutions used in automatic 
segmentations in Table S2. Unfortunately, none of these newer 
sequences has been reported in routine surgical practice in the 
literature. Another important factor of MR imaging for DBS is 
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geometric distortion, which can originate from various 
sources, such as magnetic field inhomogeneity, chemical shift, 
and susceptibility differences. This factor was only assessed 
by Ishmori et al. [31] and Duchin et al. [46] in their studies, 
without disentangling individual contributing sources. With 
ultra-high field 7T MRI becoming more available, the inherent 
issues of image distortion from increasing field strengths, 
particularly magnetic field inhomogeneity, will require 
rigorous examination [106]. 
 
Automatic segmentation algorithms for the STN have 
provided excellent results, achieving a Dice score of nearly 
0.90. Unlike other brain structures that can be easily visualized 
in standard T1w MRI, the technical developments for 
segmenting DBS targets, especially deep learning algorithms, 
were encumbered by limited quality MRI databases, the lack 
of the unified segmentation protocols, and effective MRI 
technique development. Yet, the existing techniques may not 
offer the same accuracy as reported on clinical scans, which 
often exhibit poorer resolution and rougher image quality. 
 
Although the benefits of connectomic DBS surgery are 
becoming increasingly evident, especially for targets that are 
difficult to depict solely by structural imaging, high quality 
diffusion and functional MRI face challenges in their 
integration into clinical routines. This makes development and 
validation of relevant functional targeting algorithms with 
large clinical databases more difficult. 

C. Intra-operative and post-operative imaging in DBS 
Surgical target displacement in DBS due to intraoperative 
tissue shift has been measured to be more than 2mm in some 
cases [94, 107, 108]. However, aside from surgical protocols 
that avoid CSF leakage to reduce this phenomenon, no 
effective algorithms similar to those in brain tumor resection 
[109] have been proposed based on intra-operative imaging 
for tissue shift correction. Intra-operative fMRI [95] offers the 
possibility of real-time monitoring for the impacts of DBS to 
improve the final targeting, but the high cost and special 
requirements for surgical setup make it difficult to access. 
Aside from confirming electrode position, post-operative MRI 
can also play a valuable role in advancing our understanding 
of the mechanism and true impacts of DBS [96, 97]. For both 
intra-operative and post-operative imaging, image artifacts 
(e.g., streaking and distortion) induced from DBS leads can 
pose an obstacle in obtaining accurate knowledge of final 
implantation location, and need to be carefully considered in 
imaging and outcome analysis. 

D. Future directions 
Studies [110] have indicated that instead of local circuitry 
modulation, DBS may exhibit widespread effects on the brain. 
Although still at the early stage, preliminary retrospective 
studies in connectomic DBS [71, 72, 74] have shown great 
potentials. The surgical strategy may eliminate or at least 
minimize the need for MER, potentially resulting in shorter 
operation time and improved patient comfort. The use of brain 
connectivity information in DBS planning and analysis will 
continue to enrich our understanding of the neural circuitry 
and the mechanism of DBS in the future.  

 
Current DBS strategy focuses primarily on dopamine-related 
motor symptoms of PD, and the non-motor issues (e.g., 
psychiatric symptoms and cognitive declines) are rarely 
considered. In addition, traditional stimulation targets, such as 
STN and GPi still have their limitations in therapeutic benefits 
and side effects [111]. These motivate the search for new DBS 
targets to treat PD, and a number of potential candidates, 
including individual nuclei and neural pathways, have been 
proposed [71, 112], as well as multi-target stimulation to boost 
the impacts [113]. These demands pose two challenges on 
image-guidance of DBS. First, continued efforts are still 
required to develop new MRI (structural and functional) 
techniques and the associated analytical methods to help 
identify the structures/pathways and confirm their impacts. 
Second, with richer image modalities required to improve 
DBS planning, the challenges of multi-target stimulation, and 
new DBS electrode designs, DBS navigation software will 
need to provide more intuitive and resource-efficient strategies 
for  data visualization [114] and updated algorithms for 
improved electrode trajectory planning. 
 
Machine learning and deep learning techniques have shown 
early success in facilitating DBS planning in anatomical 
segmentation [54, 56-58], stimulation target selection [73, 74], 
and treatment outcome prediction [72]. While these techniques 
will continue to develop in the future to benefit the clinic, 
most of them have relied on limited research-grade MRI 
scans, whose resolution and image quality are superior to 
clinical images. Recent developments in deep-learning-based 
fast MRI [115], image denoising [116], and super resolution 
[117], along with hardware improvements, are expected to 
help improve clinical data acquisition. Together with the open 
data initiatives that enable growing publicly available imaging 
repositories, learning-based methods may play a more 
important role in the future.  
 
The development of image-guidance techniques can also 
benefit other treatments for PD, such as focused ultrasound 
(FUS) [118]. In addition, it can also greatly contribute to 
asleep DBS surgery [119], where the electrode is implanted 
under general anesthesia, to improve the patient’s comfort. 

VIII. CONCLUSION 
This review provides the state of the art for medical image 
guidance in targeting, navigation, and monitoring of the DBS 
procedure to treat Parkinson’s disease. With an increasing 
demand for more enhanced and personalized treatments, 
future developments in DBS image guidance are expected to 
focus on incorporating connectomic data for improved 
functional targeting, updating imaging and neuronavigation 
techniques for new brain stimulation strategies (e.g., novel 
targets and multi-target stimulation), and finally, leveraging 
machine/deep learning to allow translation of the knowledge 
and tools developed in research for clinical data and 
workflows. Historically, image guidance in DBS has closely 
accompanied the birth and evolvement of this procedure, and 
will continue to contribute to its future development by 
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providing in-depth insights of its mechanism and possibly 
extending its clinical benefits.  
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