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ABSTRACT A new approach is presented for localizing the Subthalamic Nucleus (STN) during Deep
Brain Stimulation (DBS) surgery based on microelectrode recordings (MERs). DBS is an accepted treatment
for individuals living with Parkinson’s Disease (PD). This surgery involves implantation of a permanent
electrode inside the STN to deliver electrical current. Since the STN is a very small region inside the brain,
accurate placement of an electrode is a challenging task for the surgical team. Prior to placement of the
permanent electrode, microelectrode recordings of brain activity are used intraoperatively to localize the
STN. The placement of the electrode and the success of the therapy depend on this location. In this paper,
an objective approach is implemented to help the surgical team in localizing the STN. This is achieved by
processing theMER signals and extracting features during the surgery to be used in aMachine Learning (ML)
algorithm for defining the neurophysiological borders of the STN. For this purpose, a new classification
approach is proposed with the goal of detecting both the dorsal and the ventral borders of the STN during
the surgical procedure. Results collected from 100 PD patients in this study, show that by calculating and
extracting wavelet transformation features from MER signals and using a data-driven computational deep
neural network model, it is possible to detect the borders of the STN with an accuracy of 92%. The proposed
method can be implemented in real-time during the surgery to model the neurophysiological nonlinearity
along the path of the electrode trajectory during insertion.

INDEX TERMS Deep brain stimulation, deep neural network, intraoperative localization of STN, Parkin-
son’s disease.

I. INTRODUCTION
Parkinson’s disease (PD) is a progressive neurological dis-
ease that affects 1% of people over 60 years of age [1], [2].
Motor features of PD result from the death of dopamine neu-
rons in substantia nigra pars compacta of the Basal Ganglia
(BG). Oral pharmacotherapy and surgical intervention are
both accepted as treatments. Deep Brain Stimulation (DBS)
surgery is an effective therapy used for neuropsychiatric dis-
orders especially in those that have advanced PD [3], [4].

During DBS surgery, a permanent electrode is implanted
inside the brain to deliver high-frequency electrical pulses
to the subthalamic nucleus (STN) [5]. The outcome of DBS
surgery is highly dependent on the accurate placement of
the electrode inside the STN. Since the STN is a very small
(4-7mm) and deep anatomical region, appropriate and accu-
rate implantation of the electrode is a difficult, challenging
and time-consuming task that requires a high level of profi-
ciency and expertise. Due to the sensitivity and importance
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of implantation, significant intraoperative time is spent on
localizing the borders of the STN. In fact, sub-optimal posi-
tioning of DBS electrodes accounts for 40% of cases of inad-
equate efficacy of stimulation post operation [6]. In current
practice, preoperative Magnetic Resonance Imaging (MRI)
is used to locate the STN according to a visual atlas [7].
However, the exact location of the STN cannot be determined
from MRI images [8]. Thus, intraoperative Micro Electrode
Recordings (MERs) are also used to localize the STN using
electrophysiological properties of the brain tissue surround-
ing the STN and within the STN itself. In a typical DBS
surgery, up to five microelectrodes are inserted through a
burr hole in the skull. The microelectrodes record the electro-
physiological activity along a track as they are sequentially
advanced into the brain by the neurosurgeon [9]. Since each
part in the brain has its own characteristic neural activity, that
of the STN (such as spike firing counts and patterns) can be
recognized over the background noise level. As a result, based
on monitoring of this electrophysiological activity, the neu-
rosurgeon decides when the microelectrode has entered the
STN [7], [10].

The topic of STN localization accuracy using electrophys-
iology has been studied in the literature, and several tech-
niques have been implemented (e.g., [11]–[13]). A complete
review survey has been published recently on all the stud-
ies conducted so far that used different feature extraction
techniques and machine learning algorithms for localizing
the STN nucleus [14]. In [14], Wan et al., have reported
a complete summary of the state-of-the-art algorithms that
have achieved good accuracies. It is mentioned that most
of the existing results are not robust enough for clinical
implementation and further research is needed on the topic
of detecting the STN nucleus. Some major issues of local-
izing the STN during DBS surgery in the literature have
been elaborated in [14]. One of the most important issues is
with real-time implementation of localizing the STN. post-
operative processing steps are needed (such as some critical
normalization) to prepare the feature space to be used for
classification. These methods cannot be used intraoperatively
[14]. In [11] multiple computational features have been sug-
gested to identify the dorsal border of the STN using an
unsupervised machine learning algorithm. This work was
completed in 2015 [13] with the development of a new fea-
ture selection and normalization method that is based on the
previously-suggested features. In [13], ten features were sug-
gested as the best features to use in the classification problem.
In addition, four classifiers were evaluated in [13]. Among
the suggested algorithms, the Logistic Regression (LR) algo-
rithm was reported as the most accurate scheme. In addition,
in [12], four features were selected from [11], and a Support
Vector Machine (SVM) technique was used as the classifier.
In addition, Moran et al. [15], have shown the feasibility
of estimating entry and exit points of the STN based on
normalized Root Mean Square (RMS) values.

Although high performance has been reported in some of
the aforementioned articles, the existing high-performance

techniques cannot be implemented in the operating room and
during surgery. The reason is that the extracted features used
in conventional techniques require post-operative processing
steps (such as spike sorting and a specific normalization
algorithm that requires information from the whole insertion
trajectory) [11], [13]. However, the existing approaches can
be used as post-operative validation techniques (which can
help to evaluate the quality of the conducted operation after
completion of the surgery). However, they do not allow for
STN localization in an intraoperative manner. As a result,
they cannot be used as a tool to provide feedback to the
surgical team intraoperatively for enhancing the quality of
concurrent surgery. In a preliminary study, based on data from
five patients, Cardona et al. [16], evaluated the idea of using
features without normalization and creating an online plat-
form for STN localization. They suggested that normalization
of features not be used since normalization results in loss of
high-frequency components of signals which can be infor-
mative in detecting the STN. However, they have reported
that due to the challenging nature of locating the STN during
DBS surgery, the accuracy of online techniques is signifi-
cantly lower than that of offline techniques. It is mentioned
that high accuracies are not guaranteed and further analysis
should be conducted on more data to enhance accuracy of
online systems [16]. In a recent paper [17], Valsky et al., have
used Normalized Root Mean Square (NRMS) and Power
Spectral Density (PSD) to detect the ventral border of STN
(the ending border) using a Support Vector Machine and
a Hidden Markov Model. In that paper, high accuracy is
reported for the exit boundary of STN (0.04 ± 0.18 mm)
on 131 microelelectrode trajectory recordings. The proposed
method in [17] requires Normalized RMS which indicates
that it is not feasible to implement intraoperatively for both
entry and exit borders of STN. To summarize, using the most
advanced andmost-recent technique, the challenge of design-
ing a data-driven model for detecting both the entry and exit
borders of STN in an intraoperative manner is an unmet need.
The existing problems are: (a) limited data to be used for gen-
eration of the model; (b) the need for using offline techniques
and normalized features that require critical post-operative
manipulation; and (c) limited machine learning power due to
the use of classical techniques for the generation of the data-
driven physiological model that can represent the borders of
STN. Therefore, in this paper, we propose to address the
challenge through: (a) collection of a rich and unique data-
set to be used for evaluating the possibility of reaching high
accuracy intraoperatively; (b) using features that can be cal-
culated intraoperatively with no need of critical postoperative
normalization; and (c) relying on the power of the collected
dataset and using a state-of-the-art strong machine learning
algorithm (i.e. deep neural network) to model the nonlinear
neurophysiology in order to model the borders of the STN.
This paper, reports, for the first time, that using data-driven
models, it is feasible to get an accuracy higher than 90%
for localization of STN intraoperatively. In addition, some
preliminary feasibility results on the performance of basic
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classic linear classifiers were presented in [18]. These results
are in linewith the conventional literature review given above.

In this paper, a new technique is proposed to automate
the process of localization of STN and to find the dorsal
and ventral borders of the nucleus during DBS surgery. For
this purpose, we collected 713 microelectrode tracks from
DBS surgeries of 100 PD patients. To the best of our knowl-
edge, this is the largest data set collected for this purpose,
which allows us to evaluate the possibility of using complex
machine learning algorithms for modeling the neurophysiol-
ogy based on which we can detect the borders of the STN.
Currently, such an assessment is performed entirely visually
by the clinician looking at the record and listening to the
sound of the activity. Such an approach introduces significant
subjectivity to the interpretation and can introduce error in
localization. An autonomous STN localization tool that can
provide objective feedback to neurosurgeons during the pro-
cedure would expedite the surgical procedure and improve
placement consistency and accuracy.

The proposed learning technique utilizes a sizable database
of clinical data collected and labeled in this study by expert
neurosurgeons, which ensures its accuracy. In other words,
the knowledge of placement locations and the corresponding
MER recordings acquired during 100 surgeries is encapsu-
lated in the training algorithm of the proposed technique.
When implemented in the OR, the algorithm can reduce
subjectivity of STN localization thereby directly having an
impact on placement accuracy.

In this study, we evaluated the performance of several
classical and modern classification methods for separating
the signals that are from inside and outside the STN to detect
its border based on electrophysiological activity. Three sets of
different features were extracted fromMER signals of 100 PD
patients who had previously undergone DBS implantation.
The first set of features corresponds to the conventional
feature space which was used in [11], [13]. The second set
of features denotes the Fast Fourier Transformation (FFT)
features, and the third denotes wavelet transformation fea-
tures. The main advantage of using FFT and wavelet features
over conventional features is that they can be extracted intra-
operatively since no postoperative step is needed. In [19],
Snellings et al. mentioned that wavelet-drived background
levels on STN were significantly higher than other regions
and they can be a reliable source of information to identify
the border of STN intraoperatively.

Deep neural networks and four classical machine learning
algorithms (Support Vector Machine, Logistic Regression,
K-Nearest Neighborhood and Decision Tree) were used for
classification. In addition, to improve the accuracy a new
design of an ensemble classifier consisting of four machine
learning approaches was also applied to classify and predict
the STN border.

The results of the comparative study, support the effective-
ness of the designed technique in comparison to the existing
methods in the literature. We show that the methods proposed
in this paper not only significantly improve the accuracy

of STN localization using MER signals but they can also
be implemented intraoperatively to provide feedback for the
surgical team. In this study, an accuracy of 92% was reported
for STN border localization using wavelet transformation
features and deep neural networks. As a result, the proposed
technique has the potential to be used in the operating room
for assisting neurosurgeons during DBS surgery to localize
the STN.
Remark 1: In this paper, for the first time, it has been shown

that by extracting wavelet transformation features and FFT
features from microelectrode recording signals, it is possible
to train a nonlinear data-powered computational deep neural
network model to detect and decode the two borders of the
STN. In this study, an accuracy of 92% was reported for STN
border localization based on wavelet transformation features
only. As a result, the trained model which is ready to use now,
can be employed intraoperatively for assisting neurosurgeons
during DBS surgery to localize the STN. Such intraoperative
performance has not been achieved before. This work is the
extension of the authors’ feasibility study presented in the
conference format [18] in which a small dataset and partial
features space were used to train preliminary linear models.
Also, it should be noted that the numbers of extracted features
in the FFT and wavelet transformation were 10,000 and
120,000 respectively.

II. METHODS AND MATERIALS
A. DEMOGRAPHIC DATA AND DATA ACQUISITION
Microelectrode recordings were retrospectively acquired
from 100 individuals with PD (38 female and 62 male),
who had undergone DBS implantation with average age
of 60∓6 years. In total, 713 microelectrode tracks were used
in this study as most patients received bilateral implantation
of their DBS device. The retrospective review was approved
by the local Human Subject Research Ethics Board (HSREB)
office at the University of Western Ontario (REB # 109045).
Prior to the surgery, all patients received T1 and T2 weighted
MRI scans for surgical planning (Signa 1.5T, General Elec-
tric, Milwaukee, Wis). Target coordinates were calculated by
first defining the anterior commissure and posterior com-
missure. The midline point was then used to plan the STN
target; the initial stereotactic coordinates were: 12.0 mm
lateral, 2.0 mm posterior and 4.0 mm ventral to the midline.
Adjustments were then made according to the anatomy of the
patient. All patients withheld their Parkinsonian medications
for 12 hours before surgery.

On the day of surgery, the patients received a CT scan
with the Leksell frame in place (Elekta Instruments, Sweden).
Transferring the preoperative plan to the frame space was
carried out by fusion of the stereotactic CT to the preop-
erative MRIs (StealthStation, Medtronic Corp, MN). The
patients were then brought to the operating room, a sterile
field was established, and a burr hole was drilled anterior
to the coronal suture. A computer-controlled microelectrode
drive was mounted to the Leksell frame (StarDrive, FHC Inc.,
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FIGURE 1. Microelectrode trajectory reconstruction. The red lines indicate
the depths that the neurosurgeon decided the microelectrodes are inside
the STN. The reconstructions and visualizations were performed using
custom Python codes, the Visualization Toolkit, and 3D Slicer v4.8
(https://www.slicer.org). T2-weighted 7T images were co-registered to the
preoperative CT image containing the Leksell frame. Images were
converted to the NIFTI file format using dcm2niix [20]. Co-registration
was performed using rigid registration tools in Niftyreg [21]. The
coordinates of the microelectrode trajectories were extracted from
Stealthstation (Medtronic Corp, MN).

Bowdoinham, ME), and 5 cannulas with stylets were lowered
to 10.0 mm above the surgically planned target. The stylets
were removed and replaced with 5 tungsten microelectrodes
(60 µm diameter) with an impedance of 0.5-1.0 m� at 1kHz
(FHC Inc., Bowdoinham, ME). Microelectrode signals were
then captured from 10.0 mm to 5.0 mm above the target
in 1.0 mm steps. From 5.0 mm onwards, a step size of 0.5 mm
was used. Once the ventral border of the STN was found
the recordings were completed (generally around 4.0 mm
to 5.0 mm below the surgical target. The neurosurgeon and
electrophysiologist decided on the best microelectrode track,
all microelectrodes were removed, and the final therapeu-
tic electrode was introduced down the selected optimal tra-
jectory. In Fig. 1 the trajectory of microelectrodes inside
the brain is shown. At each recording site, data was col-
lected for 10 seconds, which resulted in ∼25-30 recordings
for each microelectrode. The signals were sampled (24kHz,
8-bit), amplified (gain: 10000) and digitally filtered (band-
pass: 500-5000 Hz, notch: 60Hz) using the Leadpoint record-
ing station (Leadpoint 5, Medtronic). All the computational
analyses were conducted using custom scripts in Python and
MATLAB. A sample MER signal from a right-side anterior
trajectory is shown in Fig. 2. This figure demonstrates the
difference in electrophysiological signal inside and outside
the STN.

B. FEATURE EXTRACTION
Feature extraction plays an important role in biomedical sig-
nal processing. The features should providemeaningful infor-
mation to the machine learning algorithms and be efficient in
the computational step. In this paper, we implemented three
different feature extraction methods: (a) conventional post-
operative features, (b) fast fourier transformation, and (c)
wavelet transformation. A brief explanation of each method
is as follows:

FIGURE 2. MER trace from an anterior microelectrode trajectory from an
STN-DBS case at University Hospital, London Health Sciences Center. The
microelectrodes were advanced from 10.0 mm to 5.0 mm in 1.0 mm
intervals. From 5.0 mm to the end of the trajectory the unit was advanced
in 0.5 mm increments. The green line indicates the dorsal border of the
STN and the red line indicates the ventral border of the STN, as decided
by the neurosurgeon.

1) FEATURE EXTRACTION: CONVENTIONAL
POST-OPERATIVE FEATURES
To compare the performance of the technique proposed in this
paper with that of previous studies, we have extracted the
most effective ten state-of-the-art features reported in [11],
[13], and [12]. A list of these features for one 10-second
interval is given below:
• Number of spikes per the 10-second intervals;
• Standard deviation of time differences between the
spikes of the 10-second intervals;

• Pause index: the ratio the number of spikes greater than
50 ms to the number of spikes less than 50 ms;

• Pause ratio: the ratio of the total time of inter spike
intervals greater than 50ms to the total time of those less
than 50ms;

• Root Mean Square (RMS) value of the signal amplitude
in the 10-second intervals;

• Spiking rate: number of spikes per unit time (one
second).

• Teager Energy, which can be calculated as follows:

E =
N−1∑
i=2

x2i − xi−1xi+1; (1)

where, xi ∈ X = {x1, x2. . . . .xn} and N is the number of
samples in each signal;

• Zero crossing: the number of zero crossings in each
10-second interval;

• Curve length: the sum of consecutive distances between
points in the 10-second interval, as calculated below:

L =
N−1∑
i=1

|xi+1 − xi| (2)
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FIGURE 3. The purple shaded area indicates where the nucleus was
determined to be based on the recordings. The red highlighted depth
indicates which channel the surgeon decided to use. Each dotted line
represents a recording depth. Negative depth values are above the
nucleus, and positive values are below. The black horizontal dashed line
indicates the mean of zero crossing value in each trajectory.

• Threshold (γ ):

γ =
3

N − 1

√√√√ N∑
i=1

(xi − X̄ ) (3)

where X̄ is the average of the 10-second time interval.
As reported in [11], [13], the above-mentioned features

need to be normalized because of potential instability in
feature calculation. In the normalization procedure, the mean
is subtracted from the values of the calculated features and
divided by the standard deviation of features in one trajec-
tory. As a result, it is not possible to use these features
intraoperatively. In order to apply the normalization step,
recorded signals from the entire trajectory are required. This
is not available while implanting the electrodes. Thus, these
features can only be used as a postoperative validationmethod
but they cannot help to localize the STN during surgery. One
of the features, Zero Crossing, is shown in Fig. 3 and shown
that the difference between the values from inside and outside
of the STN nucleus is visible and clear.

2) FEATURE EXTRACTION: FAST FOURIER
TRANSFORMATION
Fast Fourier Transformation is one of the methods which
can provide valuable information in the frequency domain
and also be computationally efficient. The frequency data
provides information about where the power of the signals is
concentrated. This is important since it is believed that the
frequency content of neuron activities of each structure of
the brain is distinctive. As a result, extracting FFT features
from the MER signals can give us meaningful information
about the location of the electrode inside the brain. As shown
in Fig. 4, an increase in the power spectral density of FFT
is visible when the electrode is inside the STN. It should
be noted that by using FFT features, there is no need for
the post-normalization step. FFT based features can be used

FIGURE 4. Power from DFT in two distinct frequency bands. The upper
figure shows the frequency of 500-1000Hz indicating multi-unit activity,
and the lower figure shows the frequency of 1000-3000Hz indicating
single-unit activity. Negative depth values are above the nucleus, and
positive values are below. The green line indicates the dorsal border of
the STN and the red line indicates the ventral border of the STN,
as decided by the neurosurgical team.

intraoperatively. As a result, FFT-based feature space can be
calculated while recording theMER signals during the opera-
tion while the neurosurgeon is implanting the electrodes. This
is an advantage of the FFT-based feature space in comparison
to the ones used in the literature (such as [11], [13]).

3) FEATURE EXTRACTION: DISCRETE WAVELET
TRANSFORMATION
The discrete Wavelet Transformation (DWT), similar to the
Fourier transformation, gives the frequency content of the sig-
nal and also overcomes the drawback of losing time content
in FFT. As a result, the extracted wavelet coefficients provide
the energy distribution of the signal in time and frequency
[22]. Furthermore, there are different types of wavelet mother
functions which give us more options to extract features from
signals. Mathematically, DWT is given by

W (u, 2j) =
∞∑

n=−∞

s(n)
1
2j/2

ψ(
n− u
2j

) (4)

where ψ is the mother wavelet (basis function), u represents
time and 2j is the scale parameter for the frequency axis [22].
The signal is down-sampled by 2 to the power level of (2j).
In our work, Haar wavelet mother functions were used with
4-level decomposition. Haar is a discrete mother function
which is used for analysis of signals with sudden transitions,
in this case spikes in the microelectrode signals.

III. CLASSIFIERS
After the feature extraction step, the performance of an
ensemble of multiple supervised classifiers and deep neu-
ral network was evaluated in locating the STN. The data
was collected from 100 PD patients, and the outcome of
the classifiers shows the label of the MER signals which
is either zero or one. The signals labeled zero indicate that
the microelectrode recordings are from outside of the STN
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nucleus and those labeled one are recorded from inside the
STN. These outcomes were compared to the labels provided
by the neurosurgeon (with experience of more than 200 DBS
surgeries) for evaluating the accuracy.

A. THE ENSEMBLE OF MULTIPLE CLASSIFIERS
As an alternative to the modern classifier, in this paper we
have evaluated a specific ensemble of conventional classifiers
consisting of
1) Support Vector Machine (SVM)
2) Logistic Regression (LR)
3) K-Nearest Neighborhood (KNN)
4) Decision Tree (DT)

Using the ensemble of these classifiers can help to enhance
the accuracy and better deal with nonlinearity in the data.
We also evaluated the performance of each classifier used in
the ensemble technique separately.

There are different strategies for combining the classi-
fiers. Among the existing techniques, ‘‘majority vote’’ is a
commonly used approach. There are also other combination
strategies such as ‘‘boosting’’ and ‘‘bagging’’ based on the
majority vote method [23]. A weighted majority vote method
is used for combining the classifiers here.

1) WEIGHTED MAJORITY VOTE RULE
In the majority vote scheme, the final decision goes with the
one that has consensus for it or the one for which more than
fifty percent of the individual techniques agree. If each of
the classifiers does not give identical classification accuracy,
then it is reasonable to attempt to give the more competent
classifiers more weight in making the final decision. This
method is called "weighted majority vote rule" The formula
for a weighted majority vote is:

y = argmax
i

m∑
j=1

wjχA(Cj(x) = i), (5)

where χA is the characteristic function [Cj(x) = i ∈ A], and
A is a set of unique class labels. wj is the weight assigned to
classifier j based on its accuracy.

As a result, in this study, we evaluated the performance
of an ensemble classifier approach which is based on the
weighted majority vote rule and is composed of SVM, LR,
KNN, and DT. All results, including the performance of the
proposed ensemble technique in addition to the performance
of each classifier used in the ensemble technique are given in
Section IV.

B. DEEP NEURAL NETWORKS
Artificial Neural Networks (ANNs) have become a popular
classifier due to their inherent characteristics such as self-
learning, robustness, adaptivity and generalization capability.
ANNs are useful especially when there is enough data for
training to obtain a good network. They denote a nonlinear
mapping between inputs and outputs through multiple layers
of neurons that are fully connected to each other. In the

training phase, the ANN adjusts to get proper weights and
bias to fit the database and produce the desired mapping
between inputs and outputs. Processing information is as
follows: each neuron in the input layer takes a sample from
the dataset, multiplies it by a weight, adds a bias value and
then passes it to the hidden layer. The hidden layer transforms
this data by applying an activation function. Here is the
mathematical representation:

h = f
( n∑
p=1

Wp
2f
( m∑
q=1

W 1
pqXq + b

1
p

)
+ b2

)
, (6)

where Wpq(q = 1, 2, . . . ,m; p = 1, 2, . . . , n) is the matrix
of weights which expresses the weights between a neuron
in the input layer and another in the hidden layer, n is the
total number of hidden neurons and m is the number of
input neurons. Also, X is a vector of values in the input
layer, b is the bias and f is the activation function. A Deep
Neural Network (DNN) is a multilayer neural network with
several hidden layers capable of discovering unknown feature
coherences of input signals. It works best with a large amount
of data. In this study, due to the uniqueness and the size of
collected data, we have collected over nine thousand micro-
electrode recordings as ten-second epochs from 100 patients,
the DNN was used to model the nonlinear neurophysiology
based on which the STN was localized. In order to find
the most optimal DNN architecture for our problem, several
different neural networks were trained and tested. To evaluate
the performance of the multiple techniques in this work,
we have divided the data set into two sections: 80% of the data
was used for training based on ten-fold cross validation and
20% of the data was specifically used solely for measuring
the performance. The architecture of the neural network that
we chose in this study is a twelve-layer network with ten
hidden layers and 50 nodes in each layer. When applying a
deep neural network model, the concern of overfitting should
be addressed. For this, here we employed two regularization
methods: (a) weight decay term based on an L2 formulation,
and (b) the dropout technique. L2 regression adds the square
value of weights to the loss function in order to regularize
the training process and avoid overfitting. The L2 norm is
calculated as follows:

L2 = λ
∑
i=1

w2
i

where wi is the weight of a hidden layer and λ is the regu-
larization term. A range of 0.001 to 0.1 was tested for λ and
the chosen final value which warranted the best performance
was 0.0285. Dropout is also another regularization technique
which disconnects some random nodes during the training.
We have used a dropout rate of 0.3 which turns off 30% of
the neurons from being trained during the process. All these
parameters of the chosenDNNwere chosen systematically by
objectively tracking the accuracy of the network using ten-
fold cross validation. All the computational analyses were
conducted in Python 3.6 (TensorFlow library).
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FIGURE 5. Accuracy of Classical Classifiers and Ensemble method for Localizing STN.

TABLE 1. Confusion matrix for the DNN model.

IV. RESULTS
The dataset used in this study consisted of MER signals
from 100 PD patients obtained during DBS surgery. Each
recorded MER signal was a ten-second record from each
trajectory and depth. On average, up to five microelectrodes
were inserted on each side of a patient’s brain and in each,
trajectory signals were recorded from 25 depths. As a result,
the number of signals used in this study was large enough
to support the use of a DNN architecture. All three feature
sets (conventional postoperative features, FFT-base features,
and wavelet features) were extracted from the signals. In the
next step, the classifiers (SVM, LR, KNN, DT) were applied
to separate the two classes (inside versus outside the STN).
As mentioned, a DNN and a combination of classical clas-
sifiers were used in this study. To calculate and evaluate the
performance of the proposed composite technique, the labels
provided by the neurosurgeon during the operationwere used.
The results of this comprehensive comparative study are
given in Figure 5. As can be seen in the figure, the ensem-
ble classifier outperforms the single classical classifiers. For
example, using FFT-based features, the accuracy of SVM
alone is 85%, and this is the highest accuracy among the
classical techniques, while using the proposed ensemble of
all four classifiers, the accuracy can be improved to 90%.

The best results for this problem were achieved using the
wavelet transformation and a DNN. This combination was
able to separate the signals intraoperatively in terms of inside

and outside the STN with an accuracy of 92%. It also had
a low value of False-Positive (FP) rates equal to 3%. The
confusionmatrix for this trainedDNN is shown in Table 1. All
the trained algorithms were tested on new test MER signals
and this showed that online real-time implementation allows
input data to be processed within a short frame of time (less
than 1.35 seconds), and provides feedback on location of elec-
trodes at each depth with respect to the STN. As mentioned
before, the major problem with conventional features is that
they cannot be used during surgery because they need some
postoperative normalization steps. As a result, although these
features can provide postoperative validation, they cannot
be used during the surgery to localize the STN. However,
FFT-based features and wavelet features do not need a post-
processing step and can be extracted in real-time during
surgery. Thus, from the results shown in Table 2, the wavelet
feature space extracted from the MER signals provides rich
features for the DNN algorithm to assist the neurosurgeon in
localizing the STN intraoperatively.

In addition, it is important to note that regardless of the
problem with intraoperative implementation of the conven-
tional techniques, they do not have the accuracy of the
ones proposed here. In this paper, two main approaches
were proposed, (a) wavelet feature space used in a DNN,
and (b) FFT-based feature space used in an ensemble
SVM-LR-KNN-DT fused using a weighted majority vote.
The accuracy of both approaches for localizing the STN was
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TABLE 2. Confusion matrix for the DNN model based on validation on the unseen 20% dataset.

TABLE 3. Results for the DNN model based on ten-fold cross validation
on 80% dataset.

higher than conventional techniques. Unlike conventional
techniques [11], [13], both approaches can be implemented
intraoperatively with the wavelet-DNN having the highest
accuracy.

Thus, from the results shown in Table 2, the wavelet feature
space extracted from the MER signals provides rich features
for a deep neural network algorithm for assisting neurosur-
geons in localizing the STN intraoperatively.
Remark 2: It is worth highlighting that to evaluate the

performance of the multiple techniques in this work, we have
divided the data set into two sections: 80% of the data was
used for training based on ten-fold cross-validation and 20%
of the data was specifically used solely for measuring the
performance. The main results reported in this paper are only
for the 20% test set to evaluate the generalizability of the
algorithm and strictly avoid the leak of information from
the training set to the validation set. This result can be seen
in Table 1. In addition, the results of the ten-fold cross-
validation are given in Table 3.

V. CONCLUSION
This study presented new techniques that can be used to assist
a neurosurgeon during DBS surgery by providing accurate
localization of the subthalamic nucleus (STN). For this pur-
pose, Microelectrode Recording (MER) signals were pro-
cessed and used in a machine learning algorithm. Based on
this study, a combination of discrete wavelet transformation
features and a deep neural network algorithm was suggested
as a highly accurate approach to localize the STN during DBS
surgery with an accuracy of 92%. To validate the performance
of this approach, MER data from 100 patients living with
Parkinson’s disease were used. A total of 9365 signals were
recorded to construct the data set. A comparative study was
conducted to evaluate the accuracy of the method in com-
parison with that of existing state-of-the-art techniques. The
results showed that (a) the proposed approach can localize
the STN with an accuracy of 92%; and (b) the technique
described in this paper can be used as a cueing tool in the
operating room to assist neurosurgeons to reach the STN
target during DBS surgery in real-time.

It should be also noted that for the specific problem of STN
localization, high true negative and low false positive values
are very critical for the neurosurgical team In this regard
the proposed DNN algorithm shows 95% precision. A future
direction of this work will focus on further enhancing the
performance by using automatic feature extraction and hybrid
deep neural network algorithms. In this paper, we reported
the performance of the proposed machine learning approach
on the largest dataset that has been used in the literature
to localize the STN based on MER so far. Collecting more
data will allow for further investigations such as dividing the
patients into test and validation groups instead of the data
into test and validation sets, and more algorithmic devel-
opment such as using a hybrid recurrent neural network
(which may bypass the need for conducting feature extrac-
tion/selection phase will form a future line of research). Also,
the trained STN localizer neural network will be released so
that its performance can be tested by other groups on their
datasets.
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