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A B S T R A C T

Introduction: The development of inertial sensors in motion capture systems enables precise
measurement of motor symptoms in Parkinson’s disease (PD). The type of physical activities performed
by the PD participants is an important factor to compute objective scores for specific motor symptoms of
the disease. The goal of this study is to propose an approach to automatically detect the physical activities
over a period time and segment the time stamps for such detected activities.
Methods: A wearable motion capture sensor system using inertial measurement units (IMUs) was used
for data collection. Data from the sensors attached to the shoulders, elbows, and wrists were utilized for
detecting and segmenting the activities. An unsupervised machine learning algorithm was employed to
extract suitable features from the appropriate sensors and classify the data points to the corresponding
activity group.
Results: The performance of the proposed technique was evaluated with respect to the manually labeled
and segmented activities. The experimental results reveal that the proposed auto detection technique –

by obtaining high average scores of accuracy (96%), precision (96%), and recall (98%) – is able to effectively
detect the activities during the sitting task and segment them to the proper time stamps.
© 2017 Faculty of Health and Social Sciences, University of South Bohemia in Ceske Budejovice. Published

by Elsevier Sp. z o.o. All rights reserved.
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Introduction

Parkinson’s disease (PD) is a degenerative and progressive
movement disorder of the central nervous system (Jankovic, 2008).
There are several motor symptoms associated with the disease
including tremor, bradykinesia, dyskinesia, and rigidity. These
motor symptoms can severely affect the normal activities of
individuals with PD, particularly in advanced stages. Several
medical therapies and surgical interventions such as deep brain
stimulation (DBS) are suggested for the treatment of individuals
with PD. However, the disease is progressive in many individuals in
spite of such therapies. As the disease worsens, treatments need to
be modified to provide clinically optimized therapy. Hence, it is
essential to monitor PD patients over time in order to accurately
modify the treatment and especially target this to the individual
patient’s need. Thus, patients are required to undergo frequent
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evaluations to measure motor symptom changes over time. At
present, such evaluations have to be performed in the presence of
and by an expert clinician in clinic.

The Unified Parkinson’s Disease Rating Scale (UPDRS) per-
formed by such an experienced clinician has been accepted as the
gold standard for quantitative assessment of the PD motor
symptoms. The main drawback of the UPDRS is that the severity
of the motor symptoms is assessed subjectively by a human
observer with low inter-rater reliability (Chien et al., 2006). This
assessment serves as the gold standard for the evaluation of
patients in the clinic to grade and categorize a patient’s severity of
disease. Despite the advances in the interventions for PD including
DBS and potentially even more novel disease modifying treat-
ments, the assessment has remained within the domain of clinical
expert evaluation, which is at best scale-based and hence
subjective.

The advancement of more complex interventions for PD, thus
accentuates the need for improved assessment measures that are
objective, quantitative, reliable, and portable. Employing a
in Ceske Budejovice. Published by Elsevier Sp. z o.o. All rights reserved.

ction of physical activities during a sitting task in Parkinson’s disease
.org/10.1016/j.jab.2017.05.002

undefined
http://dx.doi.org/10.1016/j.jab.2017.05.002
http://dx.doi.org/10.1016/j.jab.2017.05.002
http://dx.doi.org/10.1016/j.jab.2017.05.002
http://www.sciencedirect.com/science/journal/1214021X
www.elsevier.com/locate/jab


2 S. Memar et al. / J. App.J. Appl. Biomed. xxx (2017) xxx–xxx

G Model
JAB 141 No. of Pages 9
quantitative measurement for each motor symptom of PD can help
clinicians monitor the patient more effectively and make better
individualized clinical decisions. It is also possible to envision
remote monitoring of patients that are unable to travel to the clinic.
In such scenarios of telemedicine-based assessments, although the
expert may be available for discussion, the assessment of the
patient is performed in their local setting and often by a non-
expert. As immobility advances, having an objective measurement
system locally that would provide the expert a consistent
assessment would be paramount in adjusting therapy.

Currently, few studies have explored quantitative measurement
of motor symptoms in PD using inertial sensors (Dai and DAngelo,
2013; Delrobaei et al., 2014; Printy et al., 2014; Salarian et al., 2007).
Inertial sensors have been used to measure bradykinesia (Cancela
et al., 2010), motor-fluctuations (Keijsers et al., 2006), fall prevention
(Moore et al., 2008) and walking speed (Lord et al., 2008). The
quantitative assessment in such studies is mainly based on motion
tracking sensors such as magnetic trackers, touch sensors, accel-
erometers, and gyroscopes. Accelerometer sensors have beenwidely
used for action recognition due to their compact size and reliability
(Godfrey et al., 2011). Accelerometers allow for continuous remote
mobility monitoring of patients and can be used to evaluate the
performance of in-home daily activities. However, the recorded
sensor data is extensive and requires manual segmentation of the
motor tasks. Briefly, the type of activity within an individual task is
identified, and the time stamp for the corresponding activity is
entered manually into a computer. Once completed, the mobility
parameters associated with each motor symptom can be measured
and analyzed.

Manually labeling the activities and segmenting the time stamps
during the motor task such as sitting has been utilized as a gold
standard. However, depending on how many tasks are done, this
process can be very time consuming, and the chance of error is
increased. For example, giving one sitting record to different
examiners for segmentation, the results were slightly different from
each other. Moreover, several examiners would have to be trained to
do the time consuming manual segmentation. Thus, automatic
detection and segmentation of the various motor tasks would reduce
data processing time, reduce human error and may encourage a
wider use of these sensors for assessment of PD.

A variety of auto activity detection techniques and their
application in PD have been proposed (Godfrey et al., 2011;
Moncada-Torres et al., 2014; Najafi et al., 2002; Nguyen et al.,
2015a). These techniques are mainly based on standard signal
processing methods, and activities such as walking, sit-to-stand, and
turning were detected by processing and analyzing the signals from
the sensors. The signals from such activities reveal significant
temporal and spatial variations, allowing these activities to be
detected using signal processing techniques. However, such
techniques may not be helpful for detecting the activities during
Fig. 1. (a): Rest, (b): Posture, (

Please cite this article in press as: S. Memar, et al., Segmentation and dete
participants using multiple inertial sensors, J. App. (2017), http://dx.doi
a sitting task since the signals associated with activities performed
while sitting do not show considerable variations. Therefore, new
approaches based on pattern recognition and machine learning
need to be applied in these scenarios.

The central aim in pattern recognition is to employ machine
learning and statistical techniques to classify various patterns and
discover the regularities in data (Bishop, 2006). Applications of
machine learning techniques are numerous and cover wide scopes
with applications in medicine, image processing, business, and
geology (Cao et al., 2016; Cobo et al., 2012; Kramar, 1995; Liu et al.,
2014; Rustempasic and Can, 2013; Salari et al., 2013). For instance, an
intelligent scoring system based on a novel machine learning
structure was proposed in (Liu et al., 2014) to predict acute cardiac
complications within 72 h for chest pain patients presented in
emergency department. Authors in (Cao et al., 2016) recently
proposed a novel method based on machine learning techniques for
image analysis and image classification. Machine learning techni-
ques are divided into two groups, namely supervised and unsuper-
vised. Supervised techniques use the automatic learning approaches
to extract the pattern from the empirical data, and sophisticated
decisions can be made based on the learned behaviours. Support
Vector Machine (SVM) (Cortes and Vapnik, 1995), decision tree
(Utgoff,1989), extreme learning machine (ELM)(Huang,2015), and K
nearest neighbours (Altman,1992) are some well-known supervised
learning techniques. On the other hand, unsupervised techniques
aim to group the patterns which are similar to each other in a set of
features without relying on the training samples. Cluster analysis is
one of the major unsupervised techniques in pattern recognition. In
hard clustering techniques such as K-mean (Hartigan and Wong,
1979), each data point is assigned to exactly one cluster. Fuzzy set
theory proposed by Zadeh (Zadeh, 1965) determines the member-
ship function; hence, data points are assigned to the proper cluster
with respect to their degree of membership. However, one of the
main drawbacks with clustering algorithms is determining the
number of clusters.

In order to address the limitations mentioned for signal
processing techniques in detecting and segmenting the activities
while sitting, and avoid time consuming manual segmentation, we
aim to use the pattern recognition technique to automatically and
efficiently detect the motor activities done continuously during the
sitting task in PD and control participants and segment the time
stamps from the inertial sensor data.

Materials and Methods

Participants

Twelve PD participants were recruited from the Movement
Disorder Center at the London Health Sciences Center. The
inclusion criteria for the PD participants were: (1) idiopathic
c): Pronation-Supination.
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Parkinson’s disease, (2) Hoehn & Yahr stage II or III (3) severe motor
fluctuations with disabling off periods and dyskinesia during ON
phases, (4) able to give informed consent, (5) able to visit the clinic
for assessment, and (6) no dementia or psychiatric abnormalities
as per formal neuropsychological assessment. Twelve healthy age-
matched control participants were recruited from the general
public. The inclusion criteria for the age-matched control
participants were: (1) no comorbidity, (2) within the same age
range as the PD participants, and (3) understand and consent to the
study procedures. The study was approved by the Health Sciences
Research Ethics Board (HSREB # 103928) at Western University and
all participants provided written informed consent prior to
participating.

Data collection protocol

Each participant performed several tasks while sitting at each
visit. As Fig. 1 illustrates, the tasks include rest, posture, and upper
limb pronation-supination. At rest (relaxed position), the partic-
ipants were asked to rest their arms in neutral position with arms
resting on the arm rest. The participants held this position for 20 s.
This was followed by the posture task where the arms were fully
extended forward with hands in a pronated position at shoulder
height for 20 s. In the pronation-supination task, participants were
asked to turn their hands one at a time and as fast as possible so
that their palms faced up and down alternatively. The participants
continued this motion for 10 s for the left hand and 10 s for the right
hand.

All these tasks were recorded while the participants were
dressed in a lightweight, stretchable, and breathable motion
capture system (Synertial IGS-180) over their regular clothing
(Fig. 2a). Participants also wore a lightweight cap on which the
head sensor was placed, as well as fingerless gloves and shoe
attachments on which hand and foot sensors were positioned. The
total weight of the suit (including 17 sensors, batteries and internal
cable) was 1.5 kg.

The suit was equipped with 17 inertial measurement units
(IMUs), positioned on each body part. The system integrates 3D
accelerometers, 3D gyroscopes, and 3D magnetometers within each
sensing unit as well as a fusion algorithm (using quaternion method
(Nguyen et al., 2015b; Sabatini, 2006) – developed by Inertial Labs
Inc., Virginia, USA) allowing relative joint angles to be computed
from the sensing units. The fusion software is implemented on a
main processing unit (MPU) and communicates wirelessly to a
receiver linked to a personal computer. Data acquisition was
performed at 60 Hz sampling rate using IGS-Bio software Version
2.56 configured for full-body human motion.

First, the suit was calibrated by placing the participant in the
middle of a hollow calibration cube constructed using plastic rods.
Fig. 2. a: Animazoo Motion Capture System. b: Sensor Set up for Arm (Rustempasic
and Can, 2013).

Please cite this article in press as: S. Memar, et al., Segmentation and dete
participants using multiple inertial sensors, J. App. (2017), http://dx.doi
A photo of the participant was taken for calibration purposes and
shown in Fig. 2a. The photo was saved under a codified identifier to
preserve the anonymity of participant, and the photo was de-
identified afterwards.

Sensor selection and feature extraction

The recorded raw data during the sitting task contains several
frames. The number of frames or data points for a one-minute
recording is approximately about 5000. Each frame or data point is
composed of a set of features associated with the sensors attached
to the different body joints. Therefore, in order to detect the
activities during the sitting task, joint angle data relevant to the
upper and lower arms were utilized (Fig. 2b). Joint angles including
all degrees of freedom from the wrist, elbow, and shoulder were
extracted from the data as the input for the auto detection and
segmentation algorithm (Table 1). In other words, such informa-
tion identifies the suitable features, representing the data for
activity detection during the sitting task. Thus, each data point is
identified in terms of the features shown in Table 1.

Auto detection and segmentation algorithm based on fuzzy C-mean
method

This research is based on the fact that the frames of the record
for the tasks performed while sitting and the associated type of the
physical activity are unknown. In other words, the training samples
are not available to get the classifier trained accordingly. Thus, an
unsupervised pattern recognition technique was utilized.

Fuzzy C-mean (FCM) technique was applied for detecting the
relevant activity during the sitting task. FCM is a clustering
technique where similar data points should be in the same cluster
while dissimilar ones are assigned to different clusters. FCM was
first presented by (Dunn, 1973) and developed by (Bezdek, 1981).
FCM as a soft clustering technique measures the degree of
membership of each data point to the particular cluster. Such
membership values fall in the range of [0,1] and exhibit the
consistency of the relationship between the data point and the
cluster. As discussed earlier, the raw data contained several frames
(data points), and each frame was composed of a set of features
associated with the sensors attached to the different joints. The
feature space for the sitting task includes the information from the
selected sensors attached to the upper and lower arms (Table 1).
Each activity is counted as one cluster. Since the number of
activities performed by the participants is known and specified in
advance, determining cluster number for the FCM clustering
algorithm is no longer a limitation in our application. The number
of clusters is equal to the number of activities performed by the
participant during the sitting task. Rest (R), Posture (P), for the right
and left upper limbs together and Pronation-Supination with right
hand (ProSup-R), and Pronation-Supination with left hand (ProSup-
L) constituting four activities performed in a consecutive manner.
The data points or the transition points between two successive
activities like Rest and Posture are labeled as NoAction using FCM
algorithm. Thus, the total number of clusters or C-value is equal to
five in the FCM algorithm.

Let N be the total number of data points in the recorded raw
data and m be the exponential weight of membership. The fuzzy
data clustering is done with respect to the minimization of the
following objective function:

Jm ¼
XN

i¼1

XC

j¼1

Um
ij :Xi;
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Table 1
Joint Angles and all the Degrees of Freedom Associated with the Selected Sensors.

Joint Angle and Degrees of Freedom for the Left and Right arms

Right-Wrist -Flexion/Extension (FE) Left-Wrist -Flexion/Extension (FE)
Right-Wrist- Ulnar/Radial (UR) Left-Wrist- Ulnar/Radial (UR)
Right-Wrist-Pronation/Supination(PS) Left-Wrist- Pronation/Supination(PS)
Right-Elbow-Flexion/Extension (FE) Left-Elbow-Flexion/Extension (FE)
Right-Elbow-Pronation/Supination(PS) Left-Elbow-Pronation/Supination(PS)
Right-Shoulder-Flexion/Extension (FE) Left-Shoulder-Flexion/Extension (FE)
Right-Shoulder-Rotation (RO) Left-Shoulder-Rotation (RO)
Right-Shoulder-Abduction/Adduction (ABD) Left-Shoulder-Abduction/Adduction (ABD)

Table 2
Performance of the Proposed Method in Detecting Rest Activity.

Number Precision Rest Recall Rest F-measure Rest

Participants Participants Participants

Patients Controls Patients Controls Patients Controls

1 99% 100% 98% 99% 99% 100%
2 97% 100% 100% 95% 98% 97%
3 100% 100% 99% 99% 99% 99%
4 98% 99% 97% 100% 98% 99%
5 98% 100% 100% 98% 99% 99%
6 98% 100% 100% 94% 99% 97%
7 98% 99% 100% 100% 99% 100%
8 95% 100% 100% 99% 97% 100%
9 98% 100% 100% 98% 99% 99%
10 97% 96% 100% 100% 99% 98%
11 100% 97% 99% 100% 99% 97%
12 100% 100% 99% 100% 100% 100%
Mean 98% 99% 99% 99% 99% 99%
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where Xi is the distance of the ith frame to the jth cluster center
Sj = {sR, sP, sPS�R, sPS�L, sNoAction} and matrix U = [uij] measures
the membership degree between ith data point to the jth cluster. To
minimize the objective function, FCM algorithm subjected to the
following process:

1. Set the termination threshold e2[0, 1], iteration step q = 0
2. Initialize membership matrix U = [uij], U(0)

3. At qth iteration, calculate the cluster centroid S(c) = [Sj] with
U(q)

Sj ¼
PN

i¼1 U
m
ij :Xi

PN
i¼1 U

m
ij

:

4. Update the membership function

Uij ¼
1

PC
K¼1ðkxi�Sjk

kxi�SKkÞ
2

m�1

;

Where SK is the cluster centroid of the previous iteration, 1 � j � C
and 1 � i � N

5. If k Uqþ1 � Uq k< e then stop; otherwise, q = q + 1 and go to
step 3.

The kinematic pattern of the joint angles, presented by the
selected sensors, is used to identify the type of the activity during
the performance.

Evaluation metric

In the manual segmentation, examiners watched the avatar
through the IGS BIO software and labeled the start frame and end
frame for each activity during the sitting task. Manual Segmentation
has been utilized as a gold standard for segmenting the time stamps
foractivitiesduring amotortasklikesitting; hence, it isconsideredas
the “ground truth” for evaluating the performance of our detection
technique based on the FCM algorithm. However, as discussed
earlier, the manual segmentation done visually by the examiner is
very time consuming since the recorded sensor data is extensive, and
this process might be erroneous since it is done by visual
segmentation. Thus, a detection and segmentation method based
on FCM was proposed in this study to do the segmentation efficiently
and in an unsupervised manner. The performance of the proposed
method is evaluated in terms of the evaluation metrics like precision,
recall, f-measure and accuracy.

Precision of each detected activity or cluster (Ci) is the number
of data points correctly clustered using the detection technique
(i.e. True Positive (TP)) divided by sum of TP and the number of data
points which are identified or labeled as Ci but they actually belong
to other clusters or activities (i.e. False Positive (FP)). So the
precision of each detected activity denoted as (Acti) is computed
using the following equation:

PrecisionActi ¼
TPActi

TPActi þ FPActi
� 100
Please cite this article in press as: S. Memar, et al., Segmentation and dete
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While precision measures the fraction of data points correctly
put in the same cluster (activity), recall is the fraction of actual data
points that were identified, and F-measure is the harmonic mean
of precision and recall. Recall score is calculated based on the
following equation:

RecallActi ¼
TPActi

TPActi þ FNActi
� 100;

Where FNActi is the number of data points that actually belong to
Cluster Ci or Activity i, but they are incorrectly identified as being in
other clusters using the detection technique, and F_measure is
formulated as below:

Fmeasure ¼ 2 � Precision � Recall
Precision þ Recall

:

Accuracy shows the fraction of data points correctly clustered
using the proposed detection technique among the total number of
examined data points. Thus, the accuracy of the model is calculated
as below:

Accuracy ¼
PC

i¼1 TPActiPN
i¼1 i

� 100;

Where C equals to total number of clusters which is 5 in our case,
and N is the total number of data points (i.e. frames). As discussed
earlier, TPActi is the number of data points correctly identified as
belonging to activity i (Acti).

Results

The FCM algorithm was applied in a blinded fashion to all
datasets. Therefore, the segmentations, manual and automatic were
ction of physical activities during a sitting task in Parkinson’s disease
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Table 3
Performance of the Proposed Method in Detecting Posture Activity.

Number Precision Posture Recall Posture F-measure Posture

Participants Participants Participants

Patients Controls Patients Controls Patients Controls

1 91% 100% 100% 96% 95% 98%
2 97% 99% 100% 99% 98% 99%
3 99% 98% 98% 100% 99% 99%
4 96% 97% 100% 100% 98% 98%
5 99% 99% 96% 100% 98% 99%
6 97% 95% 100% 99% 98% 97%
7 92% 95% 100% 96% 96% 96%
8 98% 100% 100% 94% 99% 97%
9 93% 100% 100% 98% 96% 99%
10 100% 95% 96% 100% 98% 98%
11 100% 100% 99% 99% 99% 99%
12 95% 100% 100% 100% 98% 100%
Mean 96% 98% 99% 98% 98% 98%

Table 4
Performance of the Proposed Method in Detecting ProSup_R Activity.

Number Precision ProSup_R Recall ProSup_R F-measure ProSup_R

Participants Participants Participants

Patients Controls Patients Controls Patients Controls

1 98% 96% 99% 100% 99% 98%
2 89% 90% 100% 100% 94% 95%
3 70% 96% 100% 100% 82% 98%
4 94% 98% 100% 100% 97% 99%
5 80% 99% 100% 98% 88% 98%
6 81% 97% 100% 96% 90% 96%
7 87% 100% 100% 95% 93% 97%
8 100% 98% 100% 97% 100% 97%
9 91% 87% 100% 99% 95% 93%
10 100% 87% 100% 100% 100% 93%
11 95% 88% 100% 93% 97% 90%
12 94% 80% 100% 100% 97% 88%
Mean 90% 93% 100% 98% 94% 95%

Table 5
Performance of the Proposed Method in Detecting ProSup_L Activity.

Number Precision ProSup_L Recall ProSup_L F-measure ProSup_L

Participants Participants Participants

Patients Controls Patients Controls Patients Controls

1 94% 100% 93% 98% 96% 99%
2 95% 94% 94% 95% 94% 94%
3 97% 100% 97% 90% 97% 95%
4 76% 99% 100% 97% 86% 98%
5 92% 100% 100% 94% 96% 96%
6 100% 100% 88% 97% 94% 98%
7 97% 100% 94% 88% 95% 94%
8 84% 95% 100% 86% 92% 91%
9 96% 99% 99% 90% 98% 94%
10 99% 89% 100% 100% 99% 94%
11 99% 93% 100% 98% 99% 96%
12 94% 82% 100% 100% 97% 90%
Mean 94% 96% 97% 94% 95% 95%

Table 6
Summary of the Method's Performance across the Different Evaluation Metrics and
the Performed Activities.

Motor Task Precision Rest Recall Rest F-measure Rest

Participants Participants Participants

Patients Controls Patients Controls Patients Controls

Rest 98% 99% 99% 99% 99% 99%
Posture 96% 98% 99% 98% 98% 98%
ProSup_R 90% 93% 100% 98% 94% 95%
ProSup_L 94% 96% 97% 94% 95% 95%

Table 7
Accuracy of the Detection Model for Each Participant.

Number Accuracy

Participants

Patients Controls

1 96% 98%
2 95% 95%
3 94% 97%
4 95% 98%
5 95% 97%
6 95% 95%
7 93% 95%
8 96% 95%
9 95% 95%
10 98% 93%
11 98% 93%
12 96% 94%
Mean Accuracy 96% 95%
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performed completely independently prior to the comparisons
discussed below. The proposed method was tested on twelve PD
participants and twelve control participants performing the sitting
task for about one minute. The proposed method aimed to use the
Please cite this article in press as: S. Memar, et al., Segmentation and dete
participants using multiple inertial sensors, J. App. (2017), http://dx.doi
sensor information from the motion capture system and automati-
cally identify the physical activities and segment the time stamps.
Such information is essential for further analysis to compute the
objective scores for motor symptoms of PD.

The percentages of precision, recall, f-measure for activities like
Rest, Posture, ProSup_R, and ProSup_L during the sitting task and
across 24 participants are shown in Tables 2–5, respectively. The
first 12 participants are the PD participants, and the second half
includes the control participants.

The last row in Table 2 is the mean of precision, recall, and f-
measure scores for all participants calculated separately for PD and
control participants. As Table 2 indicates, the mean of precision
score for Rest is about 99% indicating that the data points or the
frames of Rest activity are correctly identified using the detection
technique. The high recall value suggests that very small numbers
of data points are incorrectly identified as belonging to other
activities. F-measure score which is calculated based on precision
and recall reveals that the proposed method performed very
effectively in detecting Rest activity.

As Table 3 demonstrates, the mean of evaluation metrics for
Posture activity is close to 100%, confirming one more time that the
proposed detection technique based on FCM algorithm can
effectively detect and identify the activities performed by the
participant.

The scores of the evaluation metrics for ProSup_R and ProSup_L
indicated in Table 4 and Table 5, respectively, are slightly lower
than Rest and Posture. The reason could be that the recording time
for the Pronation-Supination activity is half of Rest and Posture as it
is divided into right and left arm. Since pattern recognition
techniques aim to find the regularity of the data, the more the
ction of physical activities during a sitting task in Parkinson’s disease
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specific pattern occurs in data, the more precise the algorithm can
detect the activity.

Table 6 summarizes the information of Tables 2–5. So mean of
precision, recall, and F-measure for each activity and across all
participants shown in Table 6. F-measure score which is calculated
based on precision and recall indicates that the proposed auto
segmentation method is able to detect the correct activity by
Fig. 3. Start Time Point and End Time Point of Auto and Manua

Please cite this article in press as: S. Memar, et al., Segmentation and dete
participants using multiple inertial sensors, J. App. (2017), http://dx.doi
obtaining the F-measure of at least 95%. The mean scores of F-
measure for Rest and Posture are very satisfactory and demon-
strate that if a specific activity lasts for about 20 s, the algorithm
can detect that activity more effectively.

Table 7 indicates the accuracy of the detection technique in
terms of all activities for each participant. Overall, the detection
model can detect the activities very effectively by getting the mean
l Segmentation for each Activity and across All Participants.

ction of physical activities during a sitting task in Parkinson’s disease
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Fig. 4. Mean of Time Difference between Manual and auto Segmentation across 24 Participants for Start time and End Time of each Activity.
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accuracy score of 96% for the PD participants and 95% for the
control participants. Based on the experimental results, the
accuracy above 90% is perfect as the proposed technique is
evaluated w.r.t. the manually labeled data points done visually by
the examiners. Such manual segmentation is not absolutely
consistent among the examiners. So the accuracy of 90% for the
auto detection activity technique is acceptable. This issue is clearly
shown in Figs. 3 and 4.

The recorded raw data contains several frames. Since all
activities are performed in a continuous fashion during the sitting
task, the auto activity detection model determines the start frame
and end frame for each activity similar to what examiners do for
manually segmenting and labeling the frames. The start time point
and the end time point of all activities include 8 transition points.
Fig. 3 indicates each transition point based on the auto detection
algorithm and manual segmentation method across all partic-
ipants. The frame was converted to seconds w.r.t. the sampling
rate. Raw data (acceleration, angular velocity) were recorded at the
sampling rate of 60 Hz during the performance. For example, if the
start frame for the Rest activity is equal to 200, it means that Rest
actually starts at about 200/60HZ = 3 s of the record. The exact start
time (in s) and end time (seconds) for each activity using manual
and automatic segmentation are provided in the Appendix A.

All graphs in Fig. 3 suggest that the proposed auto segmentation
method perfectly overlaps with the manual or visual segmenta-
tion. For example, in Fig. 3A, the start time of rest activity for
participant #1 is at 11th second based on the auto segmentation,
and such a score is at second 10 using the manual segmentation.
Hence, based on the graphs in Fig. 3, start time points and end time
points achieved using the auto segmentation method is pretty
close to manual segmentation for all activities.

The mean of differences and variances between manual and
auto segmentation of the sitting task for all activities and across all
participants are computed in terms of seconds and indicated in
Fig. 4. Fig. 4 suggests that the time stamp difference between auto
and manual segmentation is negligible, and such differences can be
observed among different examiners that manually label and
segment the raw data. This issue confirms that the accuracy with
the cut-off score of 90% is a good estimation showing that the
proposed technique performs effectively enough in detecting the
activities and segmenting the time stamps. The average of
differences between the auto and manual segmentation, across
8 transitions shown in the last column of Fig. 4, is DTavg= 0.43s.
This difference is not significant, allowing the proposed technique
Please cite this article in press as: S. Memar, et al., Segmentation and dete
participants using multiple inertial sensors, J. App. (2017), http://dx.doi
to be an efficient and effective alternative for the time consuming
manual segmentation.

Discussion

Detecting the activity and segmenting the time stamps during a
motor task is the initial and significant step in kinematic analysis.
Once the activity is detected and segmented to the corresponding
time stamp, the objective score can be measured for the motor
symptoms. For instance, bradykinesia (Dai et al., 2016) score is
computed based on Pronation-Supination activity with both left
and right hands, and the scores of motor symptoms such as
dyskinesia (Goetz et al., 2013) and tremor (Das et al., 2011) are
calculated w.r.t. the Rest and Posture, respectively while sitting. So,
having an intelligent algorithm to automatically and effectively
detect the performed activities and segment the time stamps is an
essence.

Manual segmentation of extensive sensor data for finding the
time stamp associated with certain activities is very time-
consuming, and it requires qualified examiners to get trained on
this task. In order to tackle such limitations of manual segmenta-
tion, the auto detection and segmentation technique proposed in
the current study made use of information from the inertial
sensors to identify and segment the activities performed during
the sitting task.

Several studies have addressed the problem of auto activity
detection for different purposes (Godfrey et al., 2011; Moncada-
Torres et al., 2014; Najafi et al., 2002; Nguyen et al., 2015a). Most of
these studies processed and analyzed the signals from the sensor
in order to detect the specific activities. For example, in (Godfrey
et al., 2011), the proposed activity detection algorithm (VESPA),
which is based on Scalar (dot) product method, utilized the
information from a chest mounted accelerometer for detecting the
sit-to-stand and stand-to-sit activities. The same activities were
detected in (Najafi et al., 2002) using a miniature gyroscope
attached to the chest and a portable recorder placed on the waist.
The authors in (Nguyen et al., 2015a) proposed a method to detect
different types of activities like Standing, walking, turning, and
sitting during the TUG (Time-Up-And-Go) task, performed by PD
participants. The techniques used in the previous works are mainly
based on signal processing techniques where the signals from
sensors were detrended to remove sensor drift, normalized, and
band pass filtered with optimal frequencies to reveal kinematic
peaks that corresponded to different activities. In the current
study, the activities, shown in Fig. 1, could not be detected using
ction of physical activities during a sitting task in Parkinson’s disease
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such signal processing techniques. The kinematic peaks cannot be
revealed due to small temporal and spatial variations of the signals
associated to the activities of the sitting task.

Some studies employed classification techniques for activity
detection (Kwapisz et al., 2011; Maurer et al., 2006; Moncada-Torres
et al., 2014; Wang et al., 2012). Forexample, in (Moncada-Torres et al.,
2014),a KNNclassifierwasappliedto predictand detectthe activities
like walking and sit-to-stand using the information from inertial and
biometric sensors located on different body limbs. However, the
main drawback with such supervised classification techniques is
providing the training samples for the classifier from the previously
labeled data points. Moreover, the training samples might not be
suitable enough to effectively train the classifier, and this issue can
have an adverse effect on the accuracy of the classifier. In our case,
PD participants were asked to perform the activities at their own
pace, and their performances varied w.r.t. their mobility conditions.
Therefore, using the labeled data from one examined case as the
training samples for the classifier is not reliable. On the other hand,
it is not feasible toprovide training samples fromthe data associated
to each participant. The main goal in this study was therefore to do
the activity detection and segmentation task in an unsupervised
manner.

The proposed technique in this study was based on an
unsupervisedmachine learningalgorithm.FCM clusteringalgorithm
was applied to detect the activities during the sitting task using the
information from the inertial sensors attached to the upper and
lower arms. Our method is able to be efficiently applied to any
numberof tasks performedcontinuouslyregardlessofhowlongeach
task may last. The proposed detection technique was evaluated w.r.t.
Table A1
(Fig. 3): Start time and End time for each Activity using Auto and Manual Segmentatio

Participant
Number

Rest Auto Rest Manual Posture Auto Posture Man

Start
time

End
Time

Start
Time

End
Time

Start
Time

End
Time

Start
Time

En
Tim

1 10 33 11 34 35 57 36 56
2 0 24 0 23 26 49 26 48
3 0 22 0 22 24 45 23 45
4 1 29 0 28 29 51 30 50
5 0 22 0 22 24 46 24 46
6 9 30 9 29 32 52 32 52
7 0 22 0 22 23 44 23 43
8 3 29 3 28 30 53 30 53
9 0 26 0 25 26 48 28 48
10 0 21 0 20 22 42 22 42
11 0 22 0 22 23 43 23 43
12 0 22 0 22 23 42 24 42
13 0 25 0 25 26 44 26 44
14 5 24 4 24 25 46 25 46
15 0 21 0 22 23 44 23 43
16 0 25 0 25 27 44 28 44
17 0 25 0 25 26 46 27 46
18 0 25 0 27 28 44 29 44
19 0 22 0 22 24 42 25 43
20 0 24 0 24 26 43 25 43
21 0 23 0 24 25 43 25 43
22 0 22 0 21 23 42 23 42
23 0 22 0 21 24 43 24 43
24 0 21 0 21 22 39 22 39

Please cite this article in press as: S. Memar, et al., Segmentation and dete
participants using multiple inertial sensors, J. App. (2017), http://dx.doi
the ground truth, and it was able to effectively detect the activities
with average accuracy of 96%. The results of precision, recall, and F-
measure, calculated for different activities across PD and control
participants, are very satisfactory and encouraging, confirming that
the proposed technique is a better alternative and significantly more
efficient than the manual segmentation method in dealing with big
data. As a future application of this work, the auto detection
algorithm, which allows automatic segmentation, can determine the
time stamps for different motor tasks, and hence the objective scores
can be computed for different PD motor symptoms associated to a
motor task. Thus, individuals with mobility impairment can be
remotely monitored during daily living and assessed over time.
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Appendix A.
n.

ual ProSup_R Auto ProSup_R
Manual

ProSup_L Auto ProSup_L Manual

d
e

Start
Time

End
Time

Start
Time

End
Time

Start
Time

End
Time

Start
Time

End_Time

 59 67 59 67 70 78 70 79
 53 63 54 62 64 73 65 74
 51 62 54 62 64 70 64 70
 56 65 57 65 72 80 73 79
 60 72 62 72 75 86 75 85
 55 67 56 65 69 77 69 77
 49 67 51 67 70 83 70 83
 57 67 57 67 69 80 70 80
 51 67 52 66 68 84 69 84
 46 58 46 58 60 70 60 70
 48 62 48 62 67 81 67 81
 47 61 47 60 64 76 65 76
 47 58 47 58 61 68 60 68

 49 60 50 60 62 71 62 72
 47 58 47 58 60 68 60 69
 46 63 47 62 65 78 66 79

 50 65 50 65 67 84 67 85
 46 60 47 61 61 70 61 71

 45 55 45 55 58 65 58 66
 46 57 46 57 59 67 60 68
 47 59 49 59 60 68 60 68
 44 56 45 55 57 67 58 67
 48 62 47 60 64 74 64 74
 43 54 44 53 56 65 56 64
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