

### Western university · canada

#### Tutorial 12 Sections 009/010

TA: Greydon Gilmore Physiology 2130 Dec 3<sup>rd</sup>, 2019



#### Your TA reminding you...

- 2<sup>nd</sup> Quiz (1%)
  - Opens: Dec 2<sup>nd</sup> @ 4pm
  - Closes: Dec 4<sup>th</sup> @ 4pm
- 2<sup>nd</sup> Midterm (15%)
  - When: Dec 19<sup>th</sup> @ 9am-10am
  - Room Assignments:
    - ABBA-GANE: Alumni Hall 15
    - GHAB-POSA: Alumni Hall 201
    - PRIM-WOOD: Alumni Hall Stage
    - WU-ZIA: Somerville House 2316
- 2<sup>nd</sup> Midterm review session
  - When: Monday Dec 16<sup>th</sup> from 6-8pm
  - Where: Auditorium B University Hospital, 3rd floor



#### Today

- Group work activity
- Learning Catalytics Question
- Almost finish cardiovascular anatomy



#### **Group Work**



#### **Crossword Puzzle!**

Midterm 2 review



4. the electrical event seen when the ventricle repolarizes

- 7. the pupil does this when stimulated by norepinephrine
- 9. the blood vessels with the greatest resistance
- 10. forms when myosin binds actin
- 11. master controller of the ANS
- 15, a sustained muscle contraction
- 18. a gas exchanged at the capillaries
- 19. required to pump calcium back into the SR
- 20. is released from the zona fasciculata



#### **Learning Catalytic Question**



#### The Cardiovascular System: Mechanical Performance of the Heart

**Chapter 7: Professor Stavraky** 



#### Heart Rate (HR)

- Average: 70 bpm
- Lower HR = "healthier" (i.e. athletes: 45 bpm)
- Max HR = 220 age
- Controlled by autonomic nervous system
  - PS-NS: decreases HR
  - S-NS: increases HR



#### Stroke Volume = EDV -ESV

- End-Diastolic Volume (EDV): volume of blood in ventricles at end of ventricular diastole (just before they contract; end of Phase 1)
- End-Systolic Volume (ESV): volume of blood in ventricles at end of ventricular systole (just after contraction; end of Phase 3)
- Stroke volume = EDV ESV
  - = 160 ml –90 ml
  - = 70 ml
- Altering either EDV or ESV will change stroke volume



## Cardiac output can be determined by which of the following formulas?

- A. HR SV
- B. HR divided by SV
- C. HR + SV
- D. HR x SV



## Cardiac output can be determined by which of the following formulas?

- A. HR SV
- B. HR divided by SV
- C. HR + SV
- D. HR x SV



#### Cardiac Output (CO)

- Volume of blood pumped by each ventricle per minute
- CO = Heart Rate x Stroke Volume
  - Heart Rate = Beats per minute
  - Stroke Volume = Amount of blood pumped by each ventricle per beat
- At rest:
  - CO = 5 L/min
  - HR = 70 beat/min
  - SV = 70-80 mL/beat
  - CO = (70 beat/min)(0.07 L/beat) = 4.9 L/min
- During exercise:
  - CO can increase to 20-40 L/min
  - How? By changing HR and/or SV!



## Which of the following is INCORRECT regarding diastole (filling of the heart)?

- a. Atrioventricular valves are open.
- b. Semilunar valves are closed.
- c. Blood is flowing from the atria into the ventricles.
- d. Pressure in the ventricles is greater than in the atria.



## Which of the following is INCORRECT regarding diastole (filling of the heart)?

- a. Atrioventricular valves are open.
- b. Semilunar valves are closed.
- c. Blood is flowing from the atria into the ventricles.
- d. Pressure in the ventricles is greater than in the atria.



#### **Overall Control of SV by ANS**

- Stroke volume is amount of blood pumped by each ventricle per beat
- Two factors that affect stroke volume:
  - > ANS
  - Preload (End diastolic volume)
- PS-NS decreases SV
  - $\succ$  Ca<sup>2+</sup> flow into cardiac cells
  - force of contraction
- S-NS increases SV
  - $\succ$  Ca<sup>2+</sup> flow into cardiac cells
  - force of contraction



#### **Stroke Volume**

- During exercise, the S-NS is activated:
  - Heart contracts more forcefully and ejects more blood
  - Thus, ESV decreases
- Meanwhile, the heart is filling with more blood
  - Thus, EDV increases





#### **Stroke Volume and Preload**

- Preload: The "load" on the cardiac muscle before contraction
- This "load" comes from the blood in the ventricles that stretches the ventricular muscle
  - Thus, higher EDV = greater preload



#### **PNS Effect on HR**

- PNS innervates SA and AV nodes through vagus nerve
  - PNS releases Ach, which binds to receptors on cells of SA and AV nodes
- K<sup>+</sup> permeability (i.e. more exits cell) and Ca<sup>2+</sup> permeability (i.e. less enters cell)
- Net effect:
  - ➤ K<sup>+</sup> = HYPERPOLARIZATION
  - Ca<sup>2+</sup> = Decreases slope of pacemaker potential







#### **SNS Effect on HR**

- SNS innervates SA, AV nodes and ventricular muscles
  - SNS releases NE, which binds to receptors on cells of nodes and muscle
- Na<sup>+</sup> and Ca<sup>2+</sup> permeability (i.e. more enters cell)
- Net effect: DEPOLARIZATION and increased slope of pacemaker potential







# Which graph represents sympathetic influence on heart rate (in both cases the light grey line is under resting conditions)?





# Which graph represents sympathetic influence on heart rate (in both cases the light grey line is under resting conditions)?





#### **Summary of ANS Control of Heart Rate**

#### PSNS

- Acetylcholine released onto these areas
  - Increase K+, decrease Ca2+ permeabilities
  - Decreases slope of pacemaker potential

#### SNS

- Release norepinephrine onto these areas (indirect: epinephrine)
- Increases heart rate and force of contraction
  - Increase Na and Ca permeability
  - Increase slope of pacemaker potential





#### **Frank-Starling Law**

 Frank-Starling Law states that "an increase in EDV will increase stroke volume"





#### **Frank-Starling Law and Venous Return**

- How to increase EDV? Increase venous return to the heart!
- During dynamic exercise:
- 1. Muscle Pump: Contracted skeletal muscle around veins pushes blood to heart
- 2. Respiratory Pump: Changes in pressure during breathing pushes blood towards the heart
- 3. S-NS: Constriction of veins squeezes blood to heart



#### **Frank-Starling Law and Venous Return**





## The aortic semilunar valve prevents blood from returning to the \_\_\_\_\_.

- A. left ventricle
- B. Aorta
- C. Right ventricle
- D. Left atrium



## The aortic semilunar valve prevents blood from returning to the \_\_\_\_\_.

- A. left ventricle
- B. Aorta
- C. Right ventricle
- D. Left atrium



#### The Cardiovascular System: Vascular Function

**Chapter 7: Dr. Stavraky** 



#### **Blood Vessels**

• Structural properties of vessels are what contribute to the blood pressure characteristics seen in circulation





#### **Vessel Constriction and Blood Flow**

• As the radius decreases the pressure gradient increases.







#### Relationship Between Pressure, Flow and Resistance (Page 232)

$$Resistance = \frac{L\eta}{r^4}$$

L = length of vessel  $\eta$  = viscosity of the fluid r = radius of the vessel

Resistance = 
$$\frac{1}{r^4}$$

**Blood Flow** =  $\frac{P_1 - P_2}{\frac{1}{r^4}} = (P_1 - P_2) * r^4$  Just know this part of the equation

A small change in radius will have a LARGE effect on blood flow



#### Relationship Between Pressure, Flow and Resistance

Blood Flow =  $(P_1 - P_2) * r^4$ Blood Flow =  $(4 - 2) * 1^4$ Blood Flow = 2 L/min

Blood Flow =  $(P_1 - P_2) * r^4$ Blood Flow =  $(10 - 2) * 0.5^4$ Blood Flow = 0.5 L/min

A small change in radius will have a LARGE effect on blood flow



#### **Defining terms**

- Blood velocity (cm/sec): speed at which blood is moving through particular blood vessel
  - Fluid flows faster through a narrow tube than a larger tube
  - As cross sectional area increases mean velocity decreases
- Blood flow (L/min): volume of blood moving through set of vessels.





#### **Overall blood flow does not change**

- Blood velocity can change but total blood flow needs to remain constant
  - If you have 5L of blood you can't add or subtract... unless you have a wound





#### **Arteries and Veins**

- Contain three layers:
  - Outer Layer Tunica externa
    - Fibrous connective tissue
  - Middle Layer Tunica media
    - Smooth muscle and elastic tissue
  - Inner Layer Tunica interna
    - Endothelial cells
- Veins contain valves
- Capillaries have single layer of endothelial cells





#### **Aorta and Large Arteries**

|                         | Blood Characteristics                                                                     | Structure                                                                                                                                                                                        | Purpose                                                             |
|-------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Aorta/Large<br>Arteries | <ul> <li>High blood pressure</li> <li>80-120 mmHg</li> <li>High blood velocity</li> </ul> | <ul> <li>Large diameter</li> <li>Elastic tissue</li> <li>Thin walls <ul> <li>Easily distended</li> <li>Low resistance to blood flow</li> <li>Small drop in blood pressure</li> </ul> </li> </ul> | <ul> <li>'Shock absorbers'</li> <li>Distribute the blood</li> </ul> |







#### Capillaries

|             | Blood Characteristics                                                                                                               | Structure                                                                                                                                                          | Purpose            |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Capillaries | <ul> <li>Low blood pressure</li> <li>Small drop in blood<br/>pressure</li> <li>Very low blood velocity (1-<br/>2 cm/sec)</li> </ul> | <ul> <li>One endothelial cell thick</li> <li>Large cross sectional area</li> <li>Very large surface area</li> <li>Diffusion of gas, nutrients and waste</li> </ul> | - Exchange vessels |





#### Veins

|       | Blood Characteristics                                                                      | Structure                                                                                                                                                                                         | Purpose                           |
|-------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Veins | <ul> <li>Low blood pressure</li> <li>Low to medium blood velocity (5-10 cm/sec)</li> </ul> | <ul> <li>Very thin walls with large diameter</li> <li>Contain valves</li> <li>Some elastic tissue</li> <li>Smoth of smooth muscle innervated by ANS</li> <li>Vasoconstriction/dilation</li> </ul> | - Capacitance vessels: 70% of TBV |





#### **Starling Forces**

- Two hydrostatic pressures
  - Capillary hydrostatic pressure
  - Interstitial fluid hydrostatic pressure
- Two osmotic pressures
  - Plasma osmotic pressure
  - Interstitial osmotic pressure



#### **Exchange In Capillaries**

- Diffusion
  - Down concentration gradients
  - > Oxygen, CO<sup>2</sup>, O<sup>2</sup>, lipid soluble substances
- Filtration and reabsorption (Starling forces)
  - Filtration: movement of fluid out of capillary
  - Reabsorption: movement of fluid back into capillary



### **Capillary Hydrostatic Pressure (P<sub>c</sub>)**

Osmotic force

 $(\pi_n)$ 

(plasma proteins)

- Pressure exerted by fluid in the capillary
- Pressure drives fluid OUT of capillary and is generated by ventricular systole (Filtration)





#### Interstitial Fluid Hydrostatic Pressure (P<sub>IF</sub>)

- Pressure exerted by fluid in the interstitial space between cells in the tissue
- Movement depends on pressure in the tissue
  - Can be negative  $\rightarrow$  Filtration into tissue
  - Can be positive  $\rightarrow$  Reabsorption into capillary





### Interstitial Osmotic Pressure ( $\pi_{IF}$ )

- Pressure caused by osmosis due to few proteins in interstitial fluid (5mmHg)
- Pressure drives fluid OUT of capillary and into tissue (Filtration)





#### Plasma Osmotic Pressure ( $\pi_P$ )

- Pressure caused by osmosis due to proteins in plasma (28mmHg)
- Pressure drives fluid INTO capillary (Reabsorption)





#### **Balance of Starling Forces**

- Starling-Landis equation used to calculate net fluid movement (NFM) across capillary bed Arteric  $NFM = K_f[(P_c - P_{IF}) - (\pi_P - \pi_{IF})]$
- $K_f$  is filtration coefficient, which represents permeability of capillary (assume 1) NFM = 1[(25 - (-6)) - (28 - (+5))]NFM = +8 mmHg
- If positive filtration OUT of capillary, if negative reabsorption INTO capillary





#### $P_{C} = 10, P_{IF} = 1, \pi_{IF} = 5, \pi_{C} = 28$

- NFM =  $K_f[(P_c P_{IF}) (\pi_P \pi_{IF})]$
- NFM = 1[(10 (1)) (28 5)]
- NFM = 1[9 23]
- NFM = -14
- Thus, reabsorption into plasma from interstitial fluid



#### Next Tutorial (Jan 14<sup>th</sup>)

• Have a great New Year!



#### What Questions Do You Have?

You can ask in the **Owl forums** as well!

Also anonymously ask questions in the **online dropbox**!!

