

Midterm #3 Review Sections 09/010

TA: Greydon Gilmore Physiology 2130 Feb 24th, 2020

Your TA Reminding You....

- 3rd Midterm Feb 28th @ 6pm (15%)
- 4th Assignment Mar 27th (1.5%)
 - Post 2 MC questions: Mar 25th @ midnight
- 3rd Quiz due Feb 25th @ 4pm (1%)
 - Opens: Feb 24th @ 4pm
 - Closes: Feb 25th @ 4pm
- 4th Quiz due March 31st @ 4pm (1%)
 - Opens: March 30th @ 4pm
 - Closes: March 31st @ 4pm

Midterm Information

- When: Feb 28th from 6pm-7pm
- What: 35 multiple choice
 - ➤ Renal Physiology 17 questions
 - Respiratory Physiology 14 questions
 - ➤ GI physiology 4 questions
- Where: TBD

Factors that minimize simple diffusion (p. 307)

$$Rate\ of\ dissusion = \frac{gradient\ *surface\ area}{thickness}$$

- 1. Huge surface area (300+ million alveoli
- Blood flow velocity (slower flow = better reabsorption)
- 3. High pressure gradient
- 4. Thin membrane (BGB)
- 5. Rate of diffusion

Effects of Changing Ventilation (p. 324)

Changing ventilation affects arterial PO2, PCO2 and pH

- A. Holding breath without changing metabolic activity
 - **↓**PO₂

Less O₂ coming in at alveolar capillaries, • $\uparrow PCO_2$ ($\uparrow H^+ = \downarrow pH$) Less CO_2 leaving at alveolar capillaries (i.e. build up in blood)

- B. Hyperventilating without changing metabolic activity
 - **†**PO₂
 - \displayPCO₂ (\displayH⁺ = \displayPH)

More O₂ coming in at alveolar capillaries,

More CO₂ leaving at alveolar capillaries (i.e. less in blood)

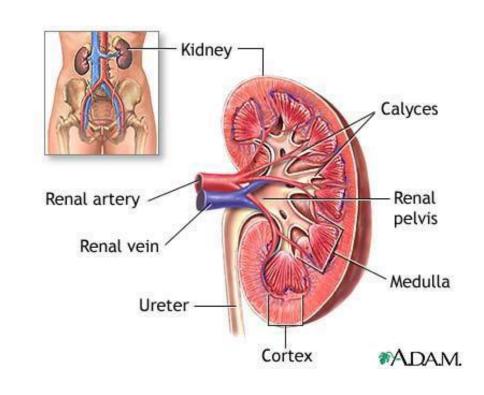
- C. Increase metabolic activity without changing ventilation
 - **↓**PO₂
 - ↑PCO₂ (↑H+ = ↓pH)

More O₂ leaving at systemic capillaries (i.e. less in blood),

More CO₂ entering at systemic capillaries

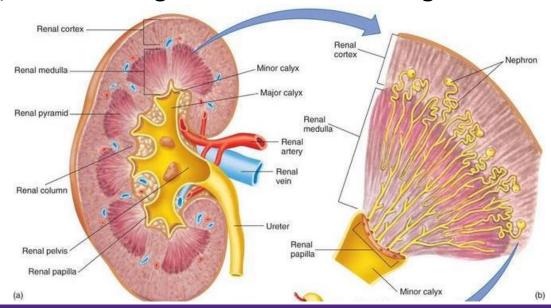
Chapter 8: Renal 17 Questions on Exam

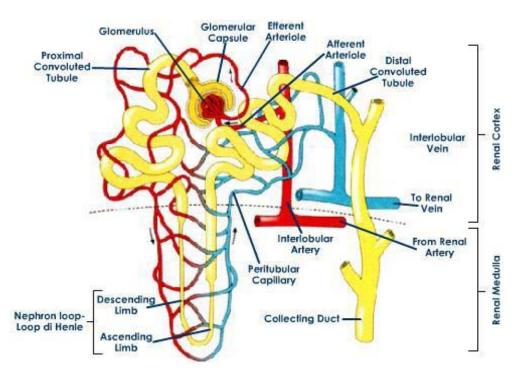
Professor: Dr. Woods


Overview of Chapter

- 1. Renal anatomy
- 2. Glomerular filtration
- 3. Transport mechanisms
- 4. Water and sodium handling
- 5. No Renin System
- 6. ANP

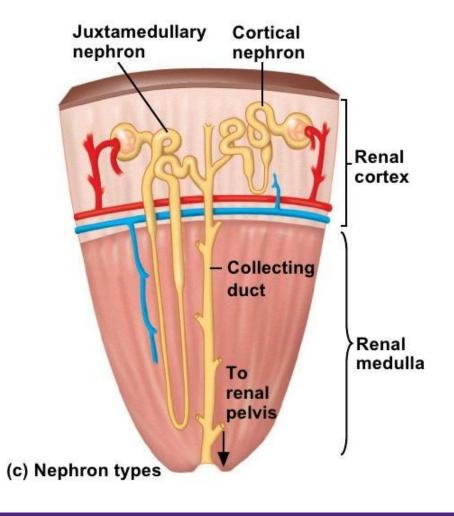
Kidney Anatomy


- Two kidneys that sit posterior and outside of abdominal cavity (i.e. retroperitoneal)
- Cortex = outer portion
- Medulla = inner portion
- Fluid collected into minor calyces → major calyces → renal pelvis → ureter
- Renal artery carries blood to kidneys
- Renal vein carries blood away from kidneys

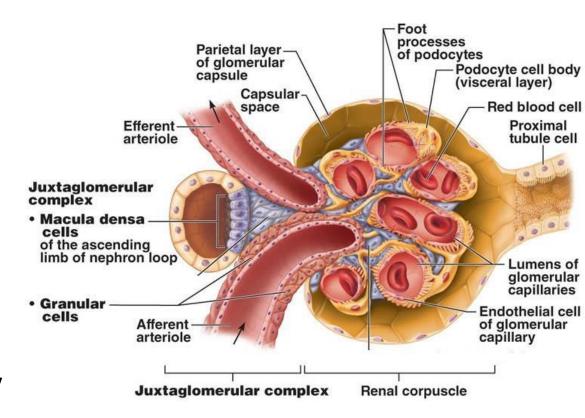


Nephron Organization In The Kidney

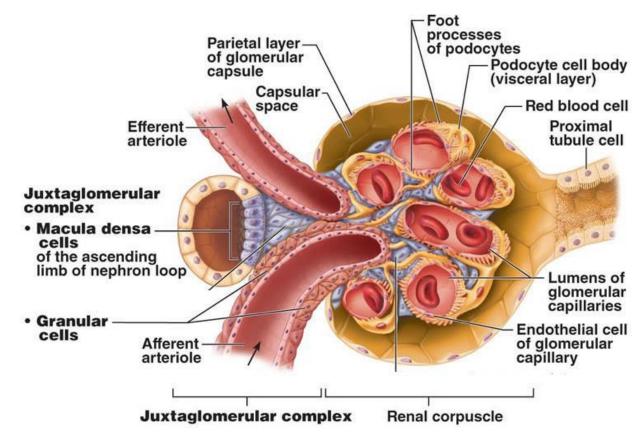
- Renal corpuscle located in cortex
- Loop of Henle projects into and out of renal medulla
- 4-5 nephrons share a collecting duct
- Collecting ducts drain into minor calyx
- In 3D, the ascending limb is found near the glomerulus



Types of Nephrons


	Juxamedullary	Cortical Nephron
	Nephron	
# in Kidney	Few	Many
Ability to concentrate urine	Good	Bad
Ability to filter blood	Good	Good
Location of Corpuscle in Cortex	Low	High
Loop of Henle	Long	Short
Capillaries	Vasa recta	Peritubular

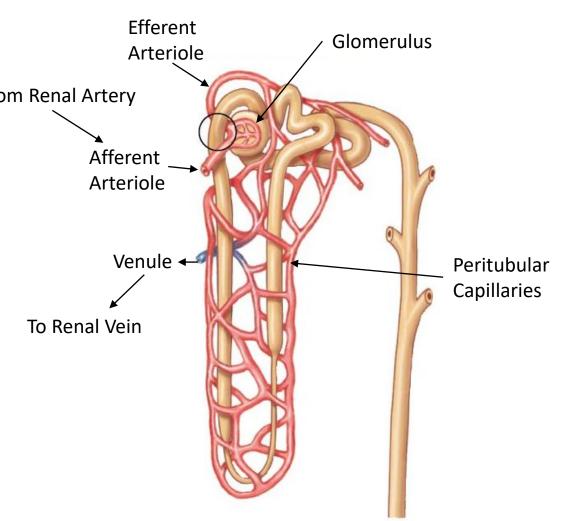
Renal Corpuscle


- Glomerulus: Group of fenestrated capillaries
- Fenestrations allow passage of many substances (ions, water, etc.) into Bowman's space (except red/white blood cells)
- Cells of Bowman's capsule (outer layer) are simple squamous epithelial cells
- Cells of Bowman's capsule (inner layer) are called podocytes
- Cells of glomerular capillaries are called endothelial cells
- Endothelial cells are fused with podocytes by basal lamina

Renal Corpuscle

- JGA: part of ascending Loop of Henle, containing macula densa
- Macula Densa: detect changes in Na⁺ and Cl⁻ levels in filtrate, cause vasoconstriction of afferent arteriole.
- Granular Cells: release renin

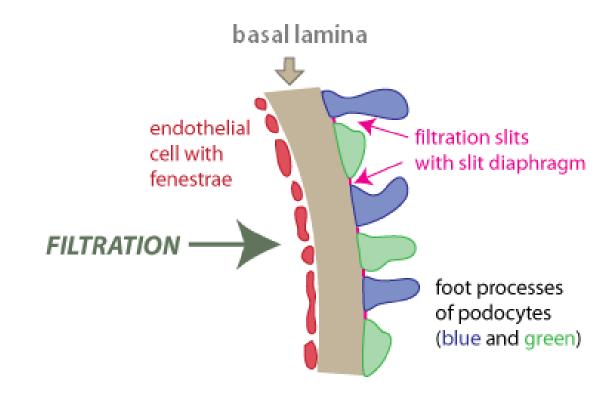
Blood Flow to the Kidneys


Typical blood flow to organs is as follows:

Heart \rightarrow Artery \rightarrow Arteriole \rightarrow Capillary \rightarrow From Renal Artery

Venule \rightarrow Vein \rightarrow Heart

Blood flow to kidney different:


Heart → Artery → Arteriole → Capillary →
Arteriole → Capillary → Venule → Vein →
Heart

Barriers to Filtration

- 1. Size of glomerular gaps/fenestrations
- 2. Gaps in basal lamina
- 3. Space between podocytes

Barriers to Filtration

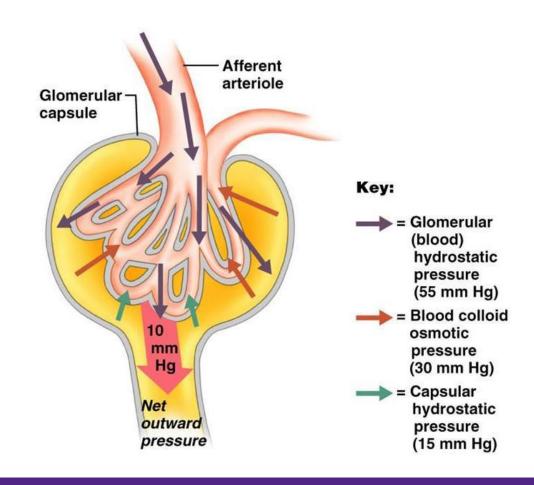
- Of all the blood that arrives at kidney, only 20% is filtered
- Net filtration pressure (NFP): Sum of forces that affect filtration

➤ NFP > 0 : filtration

 \triangleright NFP \leq 0 : no filtration

	Hydrostatic Pressure of Glomerular Capillaries	Colloid Osmotic Pressure of Glomerular Capillaries	Hydrostatic Pressure of Bowman's Capsule	Colloid Osmotic Pressure of Bowman's Capsule
Abbreviation	P_{GC}	π_{GC}	P_{BC}	π_{BC}
Caused by	Blood flowing into glomerulus	Presence of proteins in glomerulus	Filtrate remaining in Bowman's space	Presence of proteins in Bowman's space
Filtration	Promotes	Inhibits	Inhibits	Promotes
mmHg	55	30	15	0

NFP Calculation


NFP = Promotes Filtration – Inhibits Filtration

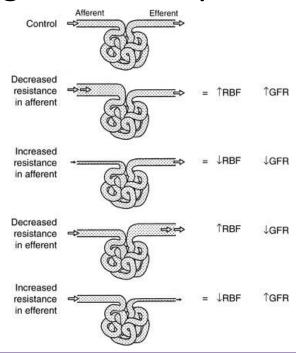
$$= (P_{GC} + \pi_{BC}) - (P_{BC} + \pi_{GC})$$

$$= (55 + 0) - (15 + 30)$$

= 10 mmHg

	P _{GC}	π _{GC}	P _{BC}	π _{BC}
Filtration	Promotes	Inhibits	Inhibits	Promotes
mmHg	55	30	15	0

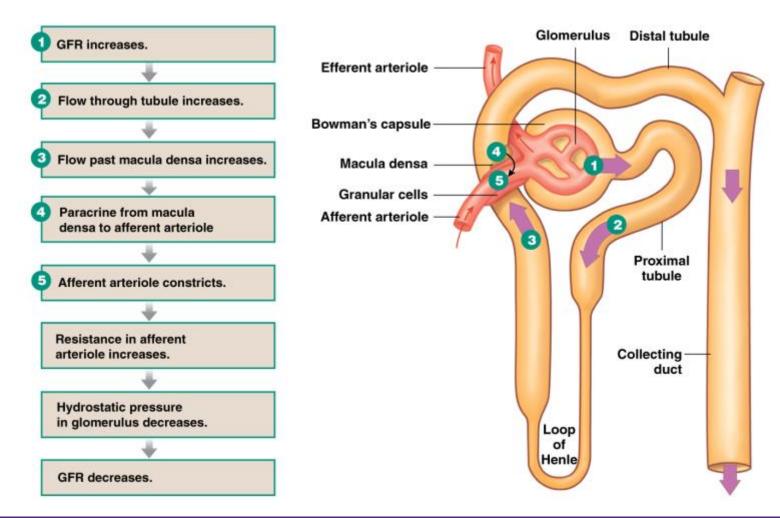
Glomerular Filtration Rate (GFR)


- Volume of fluid filtered per day by the kidneys
- Normal: 180 L/day
- Important to maintain a constant GFR throughout the day
- Affected by:
 - Net Filtration Pressure (NFP)
 - Mostly affected by renal blood flow and pressure (P_{GC})
 - 2. Filtration Coefficient
 - Mostly affected by podocytes and basal lamina

GFR Regulation: Overview

- Both the myogenic response and tubuloglomerular response are used to increase and decrease GFR
- Their combined goal is to mediate a constant GFR throughout the day

	Afferent Arteriole		Efferent A	rteriole
Smooth Muscle	Dilate	Constrict	Dilate	Constrict
GFR	1	1	1	1



GFR Regulation: Myogenic Response

- **Arterial blood pressure**
- Afferent arteriolar blood pressure
 - **Afferent arteriole stretches**
- **Sensing by stretch sensitive ion channels (opening)
- **1** Depolarization of smooth muscle open voltage-gated Ca²⁺ channels
 - **Smooth muscles of afferent arteriole contraction
 - **1** Vasoconstriction
 - Blood flow in glomerulus

GFR Regulation: Tubuloglomerular feedback

Measurement of GFR

- In order to measure GFR, you want to choose a substance that is excreted, but not reabsorbed
- Bad substances: glucose, ions, water
- Best substance: creatinine
- Rate of creatinine excretion from the body is equivalent to GFR
- GFR (L/day) = ([Creatinine]_{urine} x Urine/day) / [Creatinine]_{plasma} = (90 mg/L x 2 L/day) / (1 mg/L) = 180 L/day

Renal Handling

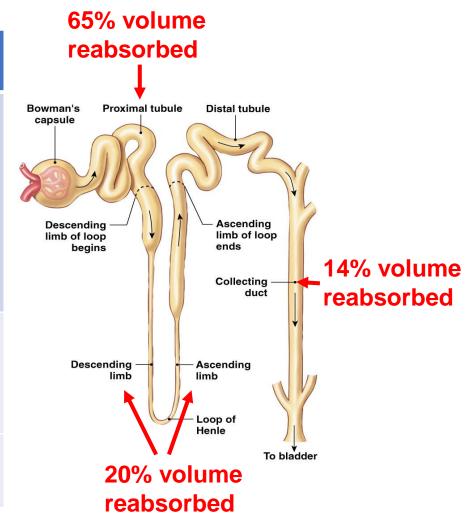
Example: Urea

- Filtered Load of Urea = [Urea]_{plasma} x GFR = 0.31 x 180 = 56 g/day
- % Excreted = (Amount Excreted/Filtered Load) x 100% = (28/56) x 100% = 50 g/day
- % Reabsorbed = 100 -% Excreted = 100 -50 = 50%

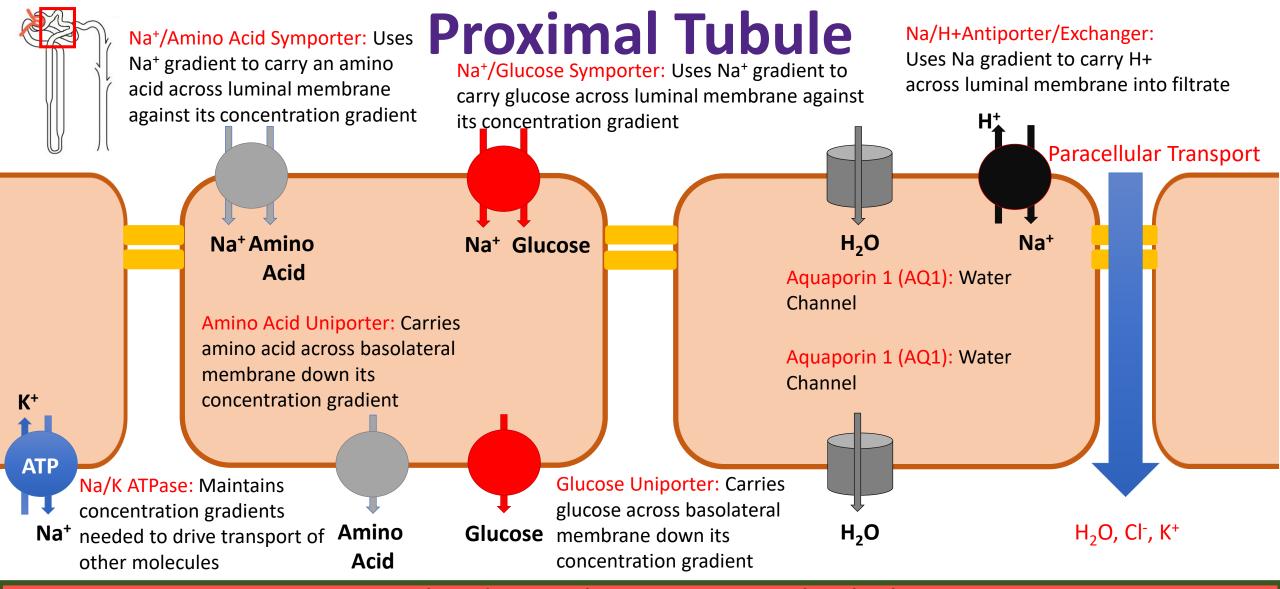
Substance	Concentration (in plasma)	Filtered Load	Amount Excreted	% Excreted	% Reabsorbed
Sodium	3.5 g/L	630 g/day	3.2 g	0.5%	99.5%
Glucose	1.0 g/L	180 g/day	0 g	0%	100%
Urea	0.31 g/l	56 g/day	28 g	50%	50%

What is true regarding reabsorption in the kidney?

- a) all potassium is reabsorbed in the collecting duct
- b) glucose is reabsorbed by a type of primary active transporter
- c) all sodium is reabsorbed by a protein carrier transporter
- d) water reabsorption can be both paracellular and transcellular in the proximal tubule

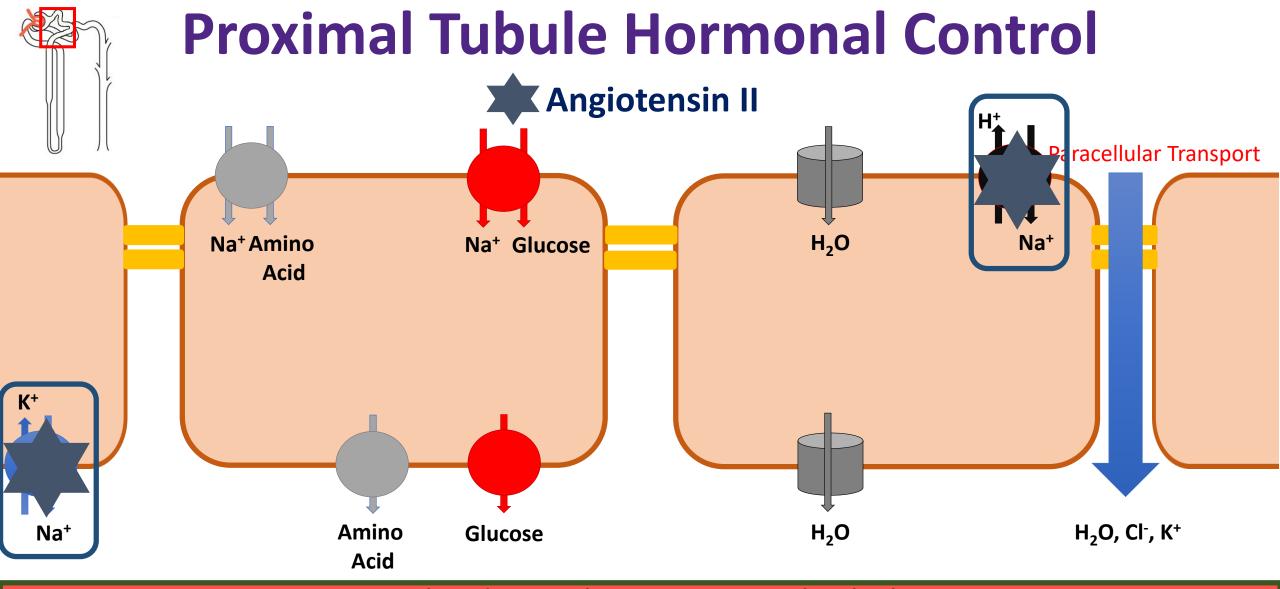

What is true regarding the action of hormones on the nephron?

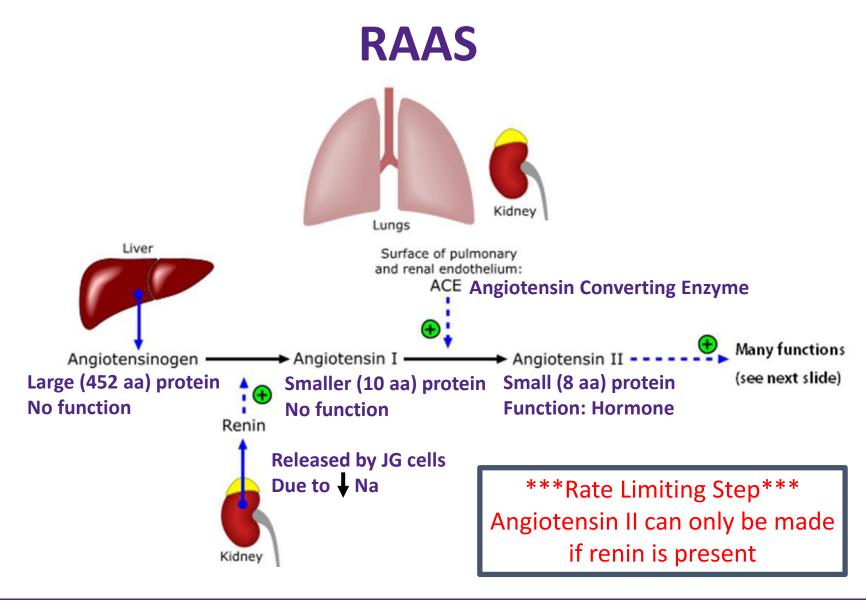
- a) anti-diuretic hormone (ADH) increases sodium reabsorption in the proximal tubule
- b) aldosterone increases sodium reabsorption in the collecting duct
- c) angiotensinogen increases sodium reabsorption in the collecting duct
- d) angiotensin II increases water reabsorption in the proximal tubule



Reabsorption Along The Tubule

Segment of Tubule	Substances	Hormone Regulation	Percent	
Proximal Tubule	Glucose, H ₂ O, Na ⁺ , K ⁺ , Cl ⁻	Yes	65%	
Descending Limb of LOH	H ₂ O and minimal Na⁺	No	20 %	
Ascending Limb of LOH	Na⁺, K⁺, Cl⁻	No	ZU 70	
Distal Tubule	Na ⁺ , K ⁺ , Cl ⁻ , Ca ²⁺	Yes	14%	
Collecting Duct	H ₂ O, Na ⁺	Yes	14/0	




Blood vessel near proximal tubule

Blood vessel near proximal tubule

Angiotensin II

- Made by cleavage of:
 angiotensinogen → angiotensin I → angiotensin II
- Peptide hormone (= requires cell-surface receptor on luminal membrane)

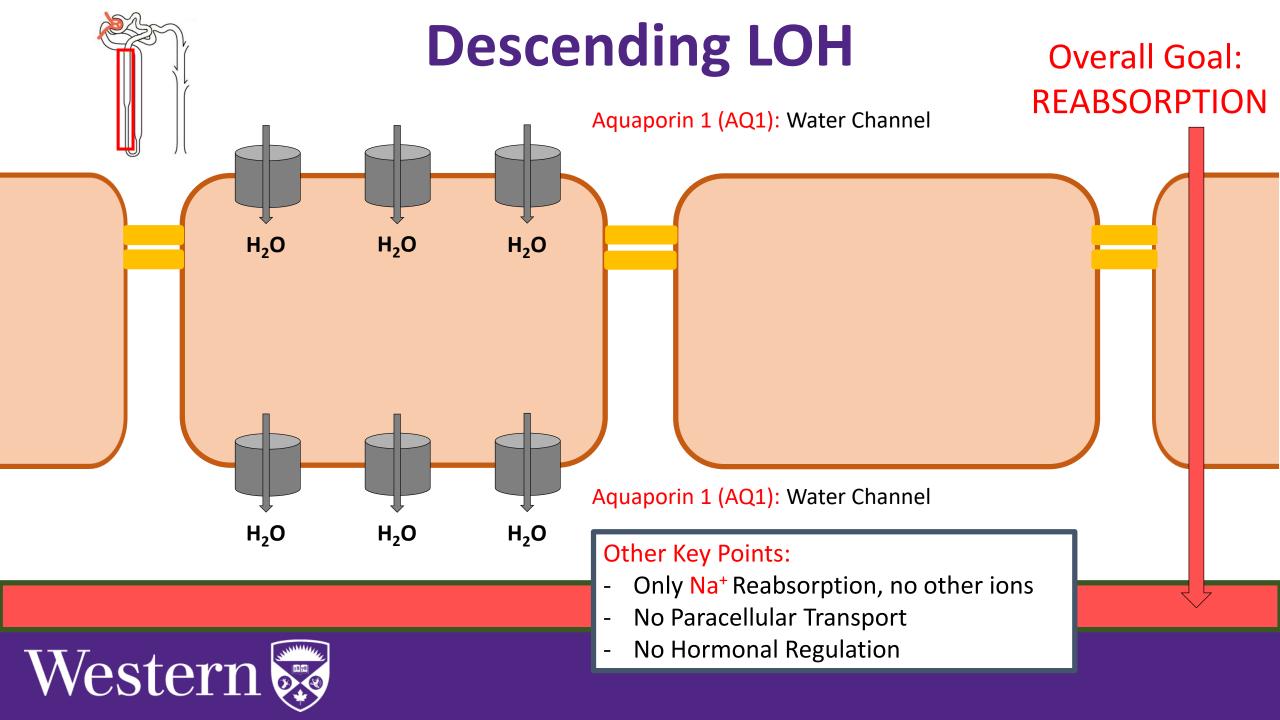
Stimulus

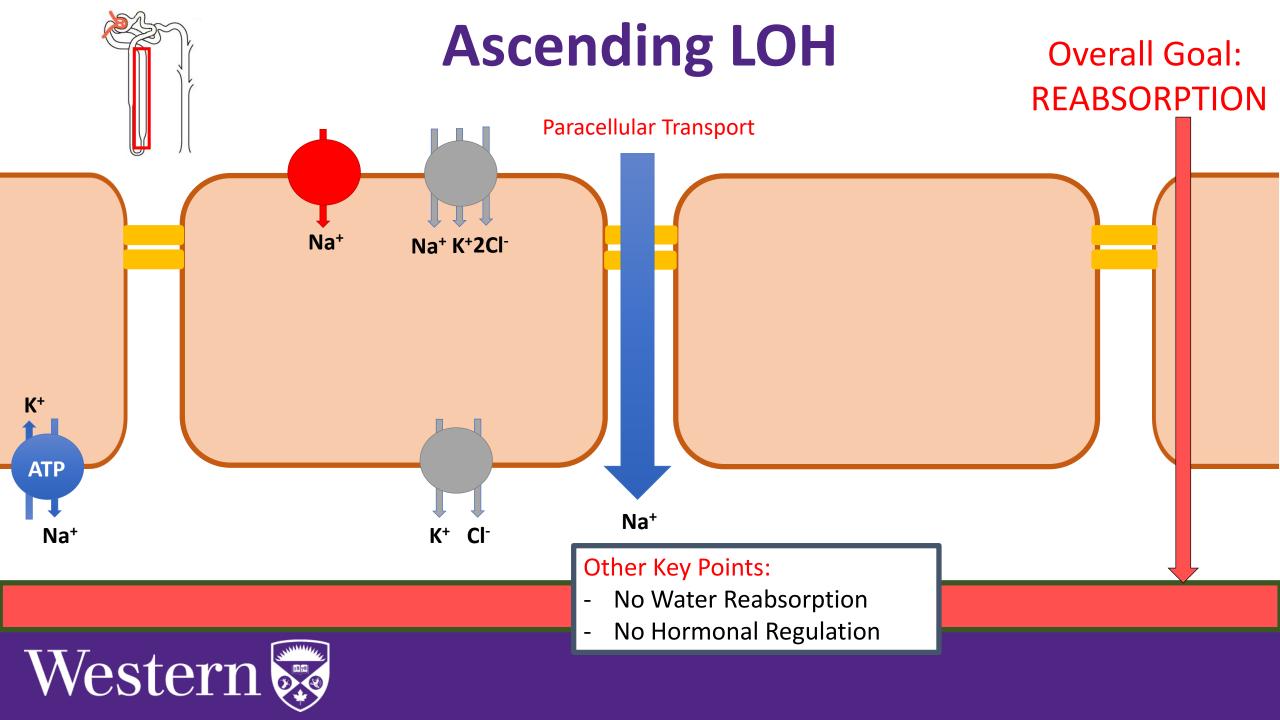
• Release of renin by JG cells due to ↓ Na⁺

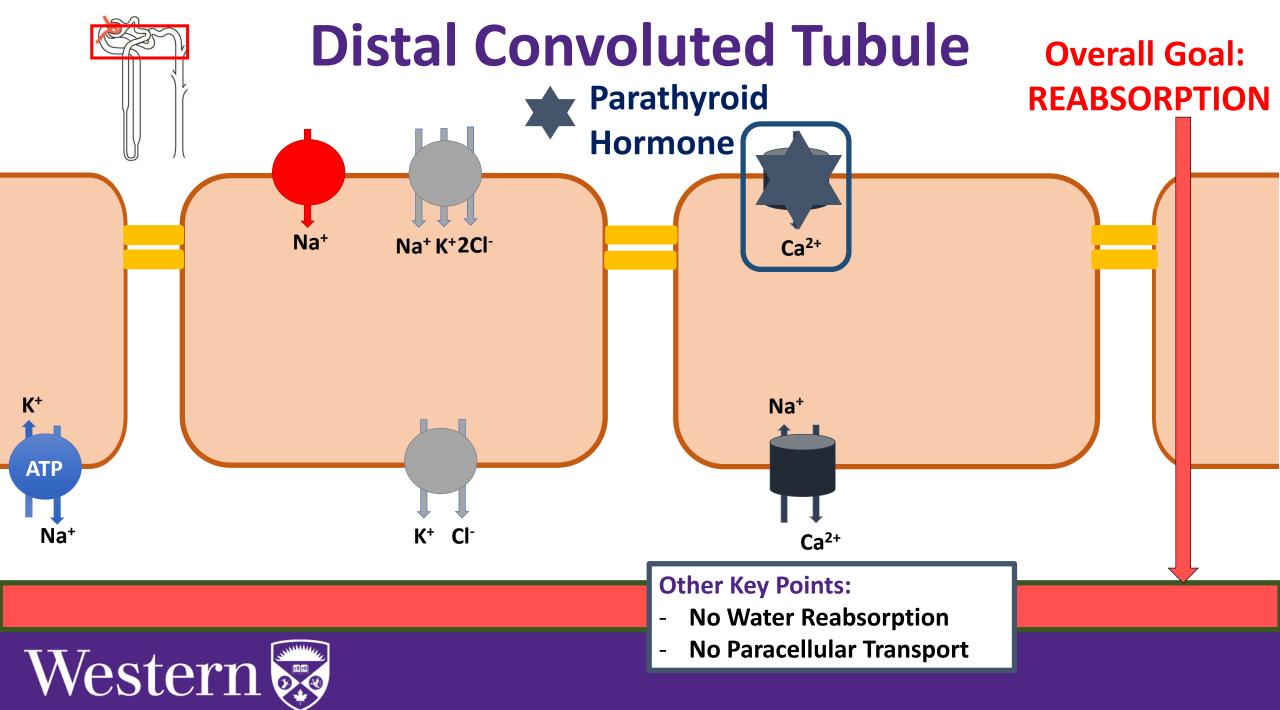
Goal

• Increase Na⁺ reabsorption in proximal tubule

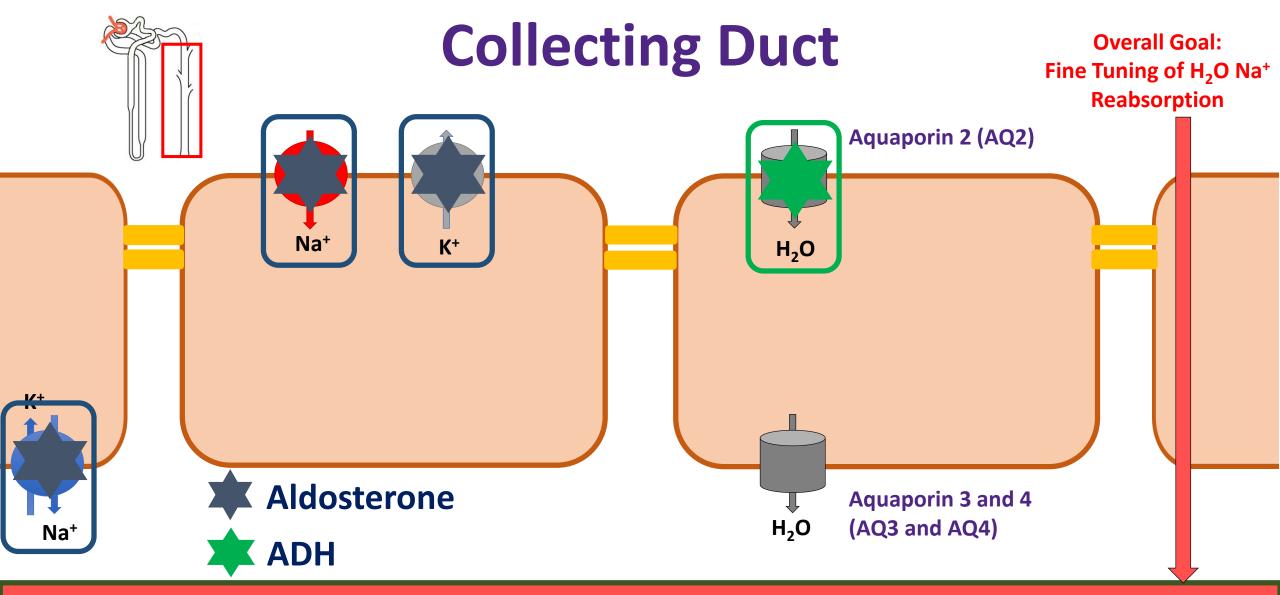
How


- 1. Increase activity of Na⁺/H⁺ exchanger and Na⁺/K⁺ ATPase in proximal tubule
- 2. Decrease GFR by constricting afferent arteriole




Renin

• Renin released due to low sodium levels



Which of the following is a transporter that increases activity in the presence of aldosterone?

- a) sodium/potassium ATPase in the proximal tubule
- b) sodium/potassium ATPase in the collecting duct
- c) sodium/hydrogen exchanger in the proximal tubule
- d) sodium/hydrogen exchanger in the collecting duct

Aldosterone

- Made by adrenal gland
- Steroid hormone (= intracellular receptor)

Stimulus

Angiotensin II, High K⁺, ACTH

Goal

Increase Na⁺ reabsorption in collecting duct

How

- 1. Na⁺ and K⁺ channels in luminal membrane: by translocation and protein expression
- 2. Na⁺/K⁺ ATPase activity and protein expression

Anti-Diuretic Hormone (aka Vasopressin)

- Made by hypothalamus (by neuroendocrine cells)
 - stored/released by posterior pituitary
- Peptide hormone (= requires cell-surface receptor on basolateral membrane)

Stimulus

High plasma osmolarity = Low ECF volume = Low BP Goal

↑ water reabsorption = ↑ ECF volume = ↑BP

Anti-Diuretic Hormone (aka Vasopressin)

plasma osmolarity (fluid is hyperosmotic)

Osmoreceptors (in hypothalamus) shrink

ADH is released from posterior pituitary

Travels in blood to collecting duct

Binds to receptors on basolateral membrane

Increases # of AQ2 channels on luminal membrane

water reabsorption

Anti-Diuretic Hormone (aka Vasopressin)

$$\downarrow BV = \downarrow BP$$

Baroreceptors (in aortic arch and carotid sinus) fire less AP to hypothalamus

ADH is released from posterior pituitary

Travels in blood to collecting duct

Binds to receptors on basolateral membrane

Increases # of AQ2 channels on luminal membrane

↑ water reabsorption = ↑BV = ↑BP

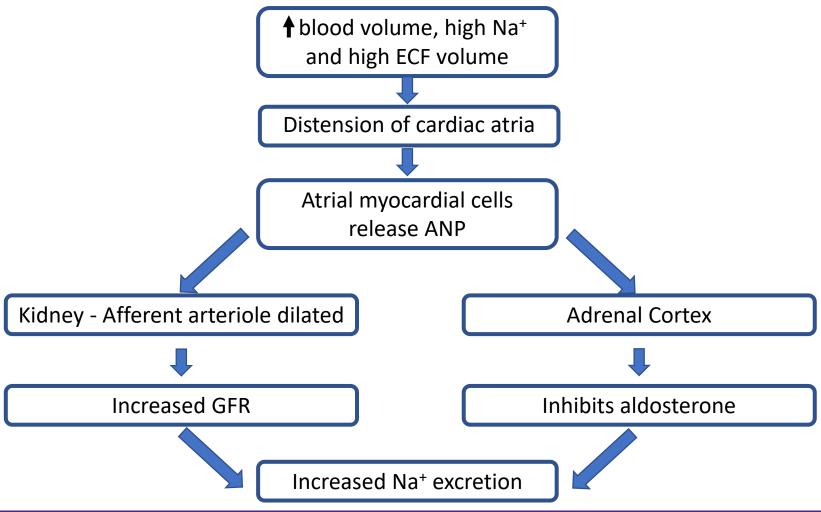
Atrial Natriuretic Peptide (ANP)

- Made by cardiac atrial cells
- Peptide hormone

Stimulus

High blood pressure

Goal

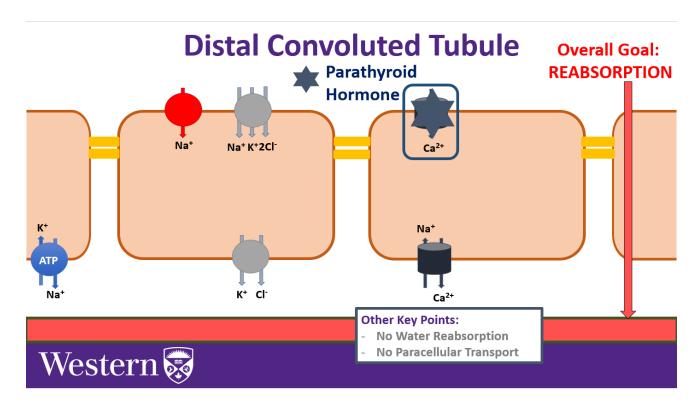

Decrease Na⁺ reabsorption

How

- Inhibits aldosterone secretion by adrenal glands
- Dilates afferent arterioles → increasing GFR
 - This increases flow of filtrate through tubule, leads to increase in Na⁺ excretion

Atrial Natriuretic Peptide (ANP)

Based on the following information, what segment of the tubule is being described?


- ➤ Incapable of paracellular transport
- ➤ No water reabsorption
- >Some hormonal control

- A. Proximal tubule
- B. Ascending limb of the loop of Henle
- C. Distal convoluted tubule
- D. Collecting duct

Based on the following information, what segment of the tubule is being described?

- ➤ Incapable of paracellular transport
- ➤ No water reabsorption
- ➤ Some hormonal control
- A. Proximal tubule
- B. Ascending limb of the loop of Henle
- C. Distal convoluted tubule
- D. Collecting duct

Summary of Transport

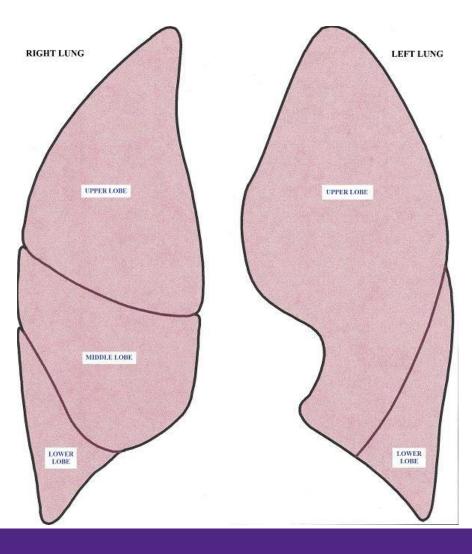
	Proximal Tubule	Descending Limb	Ascending Limb	Distal Tubule	Collecting Duct
Goal	Reabsorption of everything	Water reabsorption	Ion reabsorption	Ion reabsorption	Fine tuning (water and Na)
Water	Yes	Yes	No	No	Yes
lons	Yes (Na ⁺ , Cl ⁻ , K ⁺)	Minimal (Na ⁺)	Yes (Na ⁺ , Cl ⁻ , K ⁺)	Yes (Na ⁺ , Cl ⁻ , K ⁺ , <mark>Ca²⁺</mark>)	Yes (Na ⁺)
Paracellular Transport	Yes	No	Yes	No	No
Hormone Regulation	Angiotensin II	-	-	PTH	Aldosterone ADH

Summary of Hormonal Regulation

Hormone	Made By	Hormone Type	Stimulus	Response
Renin	Kidneys	N/A	Increased sodium	N/A
Angiotensin II	Angiotensin Converting Enzyme	Peptide	Renin – released due to low sodium	Increase sodium reabsorption in proximal tubule: 1. Increase activity of Na ⁺ /H ⁺ exchanger and Na ⁺ /K ⁺ ATPase 2. Constrict afferent arteriole (decreasing GFR)
Aldosterone	Adrenal Gland	Steroid	Angiotensin II and high K ⁺	 Increase sodium reabsorption in collecting duct: 1. Increase Na⁺ and K⁺ channels in luminal membrane 2. Increase activity of Na⁺/K⁺ ATPase
Atrial Natriuretic Peptide	Cardiac atrial cells	Peptide	High blood pressure	Decrease sodium reabsorption: 1. Inhibit aldosterone secretion from adrenal glands 2. Dilates afferent arteriole (increasing GFR)

Chapter 9: Respiratory 14 Questions on Exam

Professor: Dr. Beye


Overview of Chapter

- 1. Anatomy of respiratory system
- 2. Lung volume measurements
- 3. Partial pressures and gas exchange
- 4. Carbon dioxide transport

Lung Anatomy

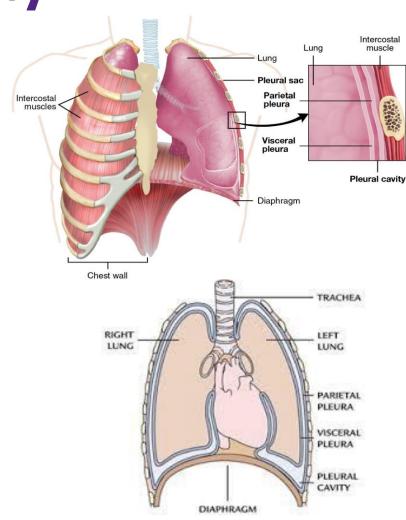
Right Lung
3 Lobes

Left Lung 2 Lobes

Why? The heart sits on the left side of thoracic cavity

Lung Anatomy

Muscles

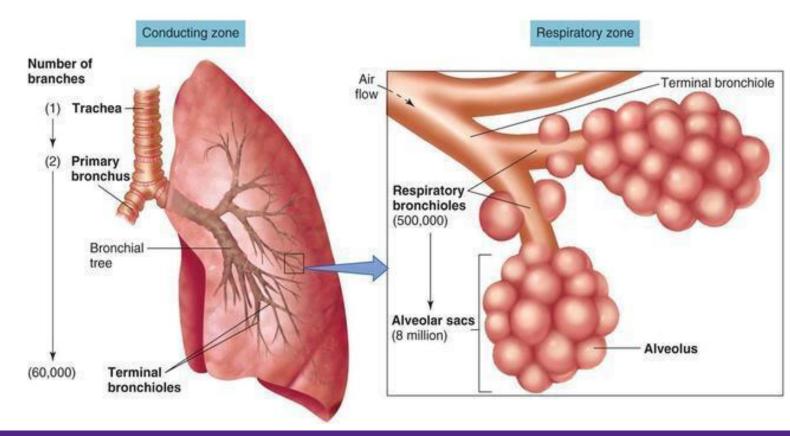

- Intercostal muscles (between ribs)
- Diaphragm (bottom)

Pleural Layers

- Visceral pleura (against lungs)
- Intrapleural space/cavity
- Parietal pleura (against chest wall)

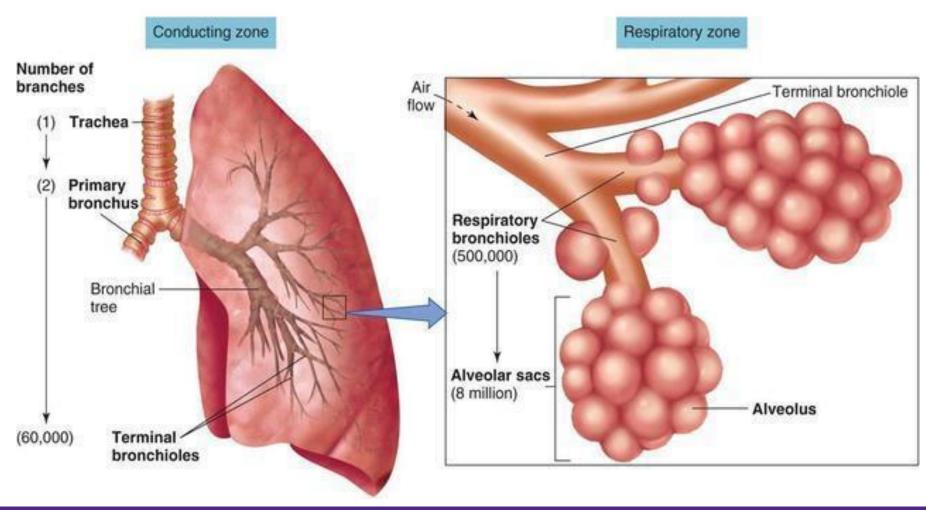
Visceral = Very close

Parietal = Pretty close

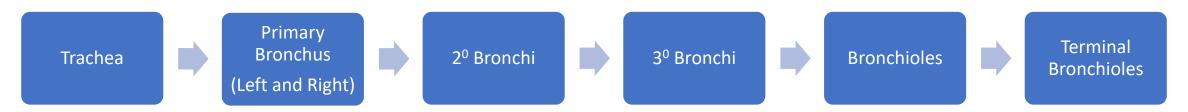

Lung Anatomy

Respiratory tract can be divided

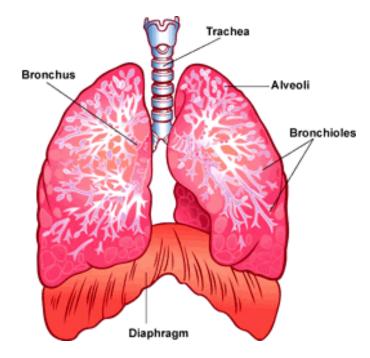
into two sections:


1. Conducting Zone

2. Respiratory Zone

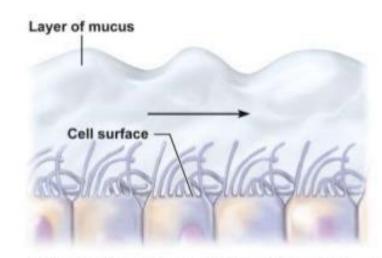


Zones of Respiratory Tract



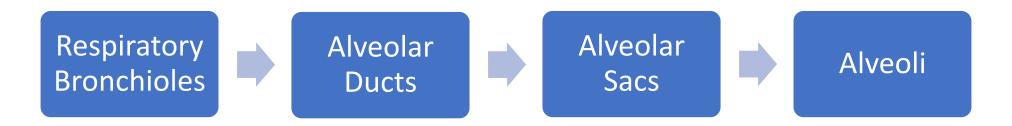
Conducting Zone

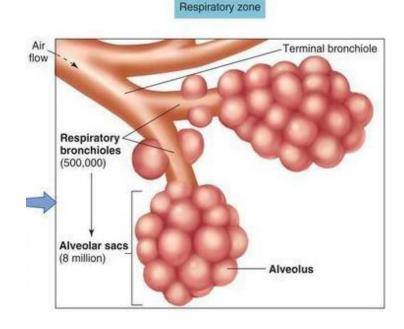
"Conducting zone terminates at terminal bronchioles"



Conducting Zone

Functions


- Transport air to lungs
- Filter, warm and moisten air
- Microbial defense:
 - Bronchial epithelial cells are ciliated
 - Cilia sweeps mucus with trapped micro-organisms towards the trachea
 - Smoking reduces function of cilia

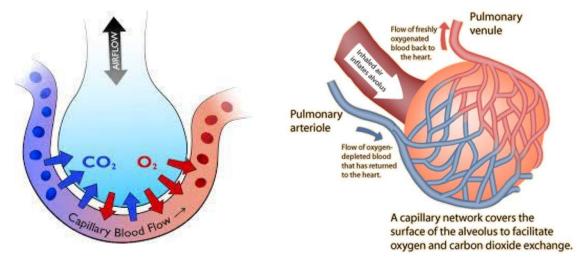

(b) Traveling wave created by the activity of many cilia acting together propels mucus across cell surfaces.

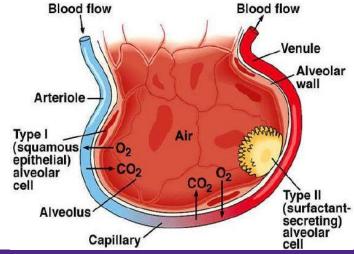
Respiratory Zone

"Respiratory zone begins at respiratory bronchioles"

The walls of the alveoli are composed of two types of cells, type I and II. The function of type II is to _____.

- A. Secrete surfactant
- B. Trap dust and other debris
- C. Replace mucus in the alveoli
- D. Protect the lungs from bacterial invasion


Respiratory Zone


Function

- Gas exchange in the alveoli at the blood gas barrier
 - CO² leaves blood supply into air
 - O² leaves air into blood supply

Cells

- Type 1 cell: flat and thin cells that form alveolar wall and allow for easy gas exchange between alveoli and capillary
- Type 2 cell: secrete surfactant
- Macrophages: destroy microorganisms

A 200 pound 20 year old man has a tidal volume of 500 mL and a respiratory rate of 10 breaths per minute. What is his anatomical dead space ventilation per minute?

- A. 5 liters
- B. 2 liters
- C. 3000 MI
- D. 200 mL

V_D= Weight x Respiratory Rate

Ventilation Calculations

- Tidal Volume: Amount of air entering lungs in one breath during normal inhalation
- Respiratory Rate: # of breaths per minute
- Pulmonary Ventilation (V_E): Amount of air entering lungs (both zones) per minute

 V_F = Tidal Volume x Respiratory Rate

 Anatomical Dead Space Ventilation (V_D): Amount of air not involved in gas exchange (Anatomical dead space = 1 mL/pound)

$$V_D$$
 = Weight x Respiratory Rate

• Alveolar Ventilation (V_A) : Amount of air entering only the respiratory zone per minute

$$V_A = V_E - V_D$$

Ventilation Calculations

Example: For a 150 lb individual with respiratory rate of 30 breaths/min and tidal volume of 200 mL/breath

```
V<sub>F</sub> = Tidal Volume x Respiratory Rate
```

- $= 200 \times 30$
- = 6000 mL/min

 V_D = Weight x Respiratory Rate

- $= 150 \times 30$
- = 4500 mL/min

$$V_A = V_E - V_D$$

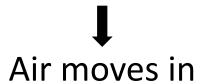
- = 6000 4500
- = 1500 mL/min

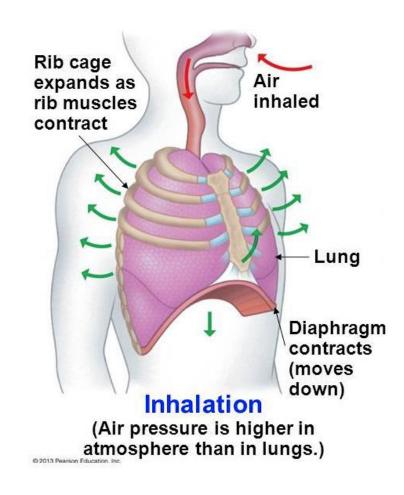
By changing your pattern of breathing, you can alter how much air is actually available for gas exchange (V_A)

You head out for a run. About 5 minutes in, you notice you are breathing pretty hard. What is happening in your thoracic cavity?

- a) your external intercostals are contracting during exhalation
- b) your diaphragm is relaxing during inhalation
- c) your intrapulmonary pressure will match the atmospheric pressure during exhalation
- d) your internal intercostal muscles will pull your ribcage down and inwards during exhalation

Inhalation


Diaphragm and external intercostal muscles contract (Diaphragm moves down and intercostals pull ribcage up and out)


1

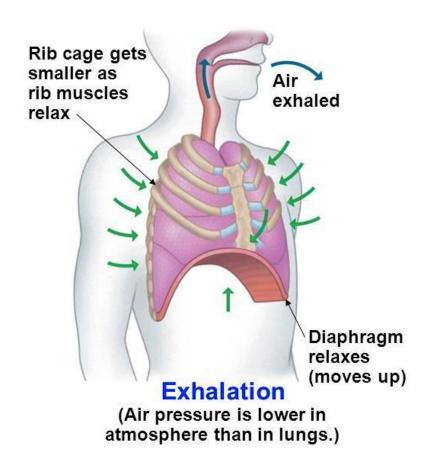
Thoracic cavity expands (Increase volume)

Decrease intrapulmonary pressure by Boyle's law (<760 mmHg)

Exhalation (Passive)

Diaphragm and external intercostal muscles relax (Diaphragm moves up and ribcage gets smaller)

Ţ


Thoracic cavity decreases in volume

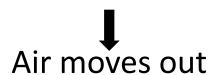
1

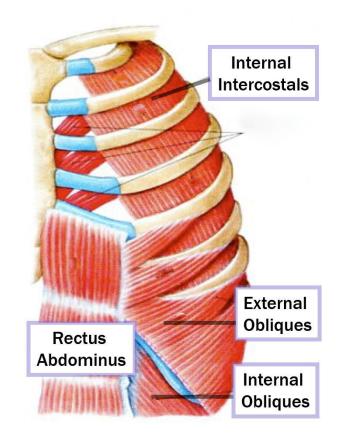
Increase intrapulmonary pressure by Boyle's law (>760 mmHg)

Air moves out

Exhalation (Active - Exercise)

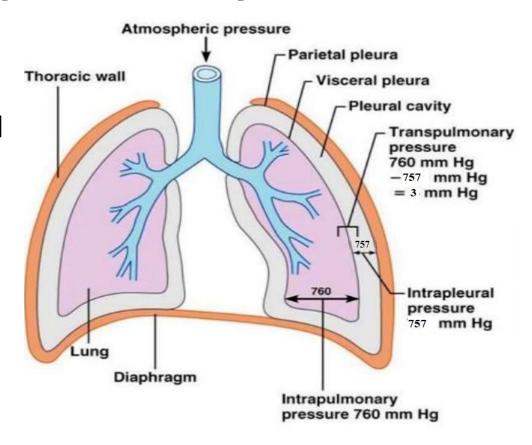
Diaphragm and external intercostal muscles relax


Internal intercostals, obliques and rectus abdominus contract


1

Thoracic cavity decreases in volume

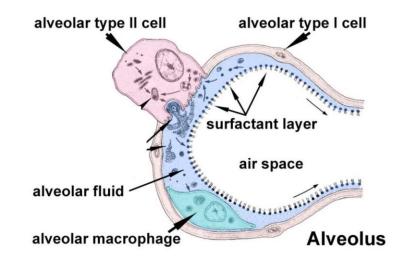
Increase intrapulmonary pressure by Boyle's law (>760 mmHg)

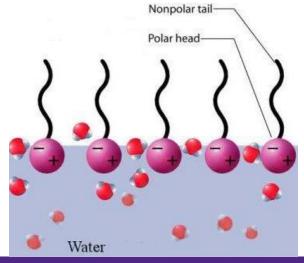

During active exhalation (exercise), which of the following muscles are contracting?

- 1. Obliques
- 2. Diaphragm
- 3. Internal intercostals
- 4. External intercostals
- A. 1, 2 and 3 are correct
- B. 1 and 3 are correct
- C. 2 and 4 are correct
- D. Only 4 is correct
- E. All are correct

Intrapleural and Transpulmonary Pressure

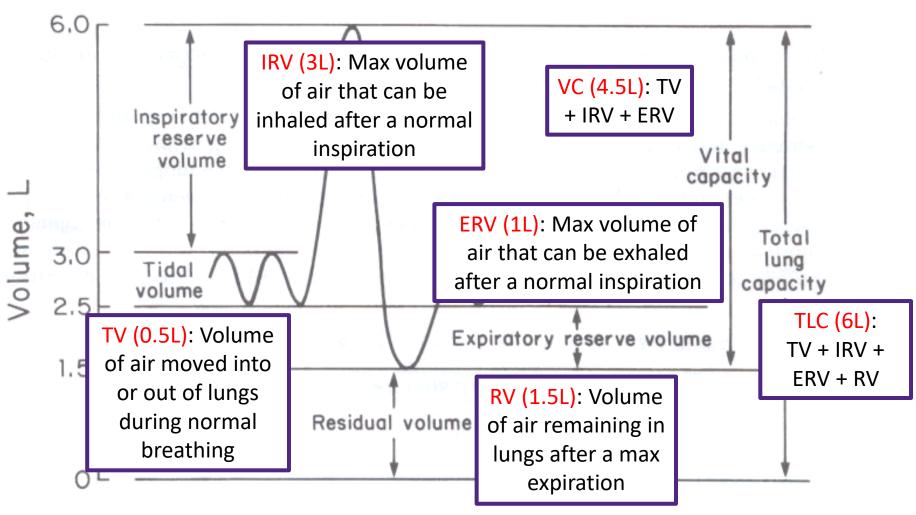
- Intrapleural Pressure: Pressure in intrapleural space; 757 mmHg
 - Prevents lung from collapsing at the end of expiration
 - Allows for easy expansion of the lung
- Transpulmonary Pressure: Pressure across the lung; +3 mmHg
 - Intrapulmonary Pressure (760) –
 Intrapleural Pressure (757)


Lung Compliance


- Compliance is the "stretchability" of the lung
- Compliance = Change in volume / Change in pressure
- Affected by 2 factors:
 - 1. Elastic tissue of lungs (33%)
 - Caused by presence of elastin and collagen
 - 2. Surface tension in alveoli (66%)
 - Surfactant reduces surface tension
- An increase in these 2 factors decreases compliance and increases likelihood of lung collapse

Pulmonary Surfactant

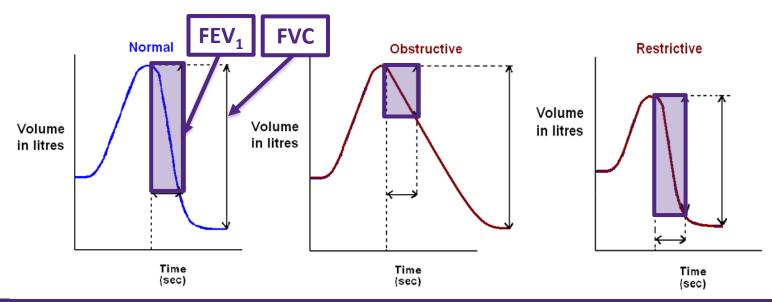
- Released by type 2 cells
- Layer is spread across air-water interface in alveoli
- Surfactant = phospholipids + proteins
- Phospholipids: hydrophilic head towards water; hydrophobic head towards air
- Proteins: help with microbial defense
- Functions:
 - 1. Reduce surface tension
 - Improve compliance and prevent alveolar collapse
 - 2. Improves microbial defense function
 - Proteins help identify foreign particles for macrophages
- Neonatal respiratory distress syndrome (nRDS):
 premature infants lack mature surfactant system,
 which leads to poor lung function, alveolar collapse
 and hypoxemia (treatment = surfactant)



If in one breath a person takes in a larger tidal volume than they normally would, which one of the following statements would be correct?

- a) they are likely be breathing in less than 500 mL (0.5 litres)
- b) they would have a smaller IRV (inspiratory reserve volume)
- c) they would have a larger total lung capacity
- d) they would have a smaller FEV1

Spirometry


What is true of a restrictive lung disease?

- A. Emphysema is an example of a restrictive lung disease
- B. Lungs can become floppy due to Loss of elastin
- C. FEV1 decreases
- D. FVC decreases

Other Lung Measurements

- Forced vital capacity (FVC): how much air a person can exhale as fast as possible during a forced breath
- Forced expiratory volume (FEV₁): volume of exhalation over 1 second

Normal	Obstructive	Restrictive
FEV1	Decreases	No Change
FVC	No Change	Decreases
FEV1/FVC = 80 %	FEV1/FVC < 80%	FEV1/FVC > 80%

Lung Diseases: Obstructive

- Air flow obstruction during exhalation
- Diameter of bronchioles decreases (lumen constricted)

	Cause	Effect
Asthma	Spasms triggered by exercise, air pollution and allergies	 Airway inflammation and hyper- responsiveness
Chronic Bronchitis	Smoking	Excessive mucus and inflammation
Emphysema	Smoking	 Alveolar wall break down creates large air sacs (↓surface area = poor gas exchange) Loss of elastin reduces elastic recoil (↑compliance so lungs fill but can't empty)

Lung Diseases: Restrictive

Air flow restriction during inhalation

	Cause	Effect
Pulmonary Fibrosis	Chronic inhalation of asbestos, coal, dust, pollution or sometimes unknown	 Fibrous scar tissue (thickened tissue) in alveoli and other lung tissue Due to thick walls, poor gas exchange (similar to emphysema but different reason) Lungs become stiff due to ↑in collagen = ↓compliance (opposite to emphysema)

In the pulmonary vein, what is the PO2 for a person at rest?

- a) 40 mmHg
- b) 46 mmHg
- c) 100 mmHg
- d) 159 mmHg

Erthropoiesis

Process of producing new RBCs (2 million made and die each day)

- Occurs in bone marrow
- Regulated by the hormone, erythropoietin (EPO) from kidneys
- Normally, EPO levels are low for balanced RBC production to loss ratio
- When O₂ levels to kidney drop, EPO is released
- Drop in O₂ can be caused by:
 - I in # of RBCs (I carrying capacity)
 - ↓ in cardiac output (↓ blood flow = ↓O₂)
 - lung disease
 - high altitude

Regulation of Ventilation

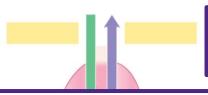
Stimulus: Altered PO₂ and PCO₂ levels

Sensors: Chemoreceptors sense change in P

Control centre: Info is sent to respiratory centre in medulla

Effector: Respiratory muscles change force of contraction and relaxation to alter pulmonary ventilation

Effect: PO₂ and PCO₂ levels return to normal



Chemoreceptors

	Central	Peripheral
Location	Medulla	Aortic arch and carotid body
Respond to changes in	pH only Note: H ⁺ cannot cross the blood brain barrier, but CO ₂ can. So CO ₂ is converted into bicarbonate and H ⁺ in CSF for detection	PO ₂ PCO ₂ pH

- 1. Gases move from high pressure to low pressure
- 2. Gases move until equilibrium
- 3. Gases only move at capillaries

Atmospheric PCO₂ = 160 mmHg Atmospheric PCO₂ = 0.3 mmHg

Alveolar $PO_2 = 100 \text{ mmHg}$ Alveolar $PCO_2 = 40 \text{ mmHg}$

O₂ enters capillaries from alveoli

Pulmonary artery

 $PO_2 = 40 \text{ mmHg}$ $PCO_2 = 46 \text{ mmHg}$

CO₂ enters alveoli from capillaries

Systemic veins

Venous PO₂ = 40 mmHg Venous PCO₂ = 46 mmHg Pulmonary circulation capillaries

Systemic circulation capillaries

Pulmonary vein

 $PO_2 = 100 \text{ mmHg}$ $PCO_2 = 40 \text{ mmHg}$

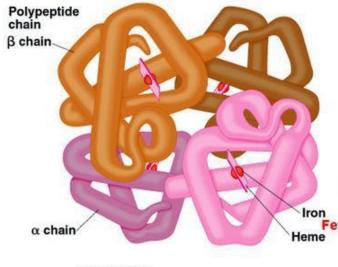
Systemic arteries

Arterial $PO_2 = 100 \text{ mmHg}$ Arterial $PCO_2 = 40 \text{ mmHg}$

CO₂ enters capillaries from body tissues

Body tissues

Tissue $PO_2 = 40 \text{ mmHg (or less)}$ Tissue $PCO_2 = 46 \text{ mmHg (or more)}$



O₂ leaves capillaries into body tissues

Oxygen Transport

Two Transport Mechanisms in Blood

- 1. Dissolved in plasma (1.5%)
 - Very inadequate
- 2. Carried by hemoglobin (98.5%)
 - O_2 + Hb \leftrightarrow Hb O_2 (oxyhemoglobin)
 - Hb is found in RBCs
 - 4 heme groups (each Fe binds a O_2) + 4 globins (polypeptide chain)
 - Note: Hb transports BOTH O₂ and CO₂ (at different sites!)

Hemoglobin

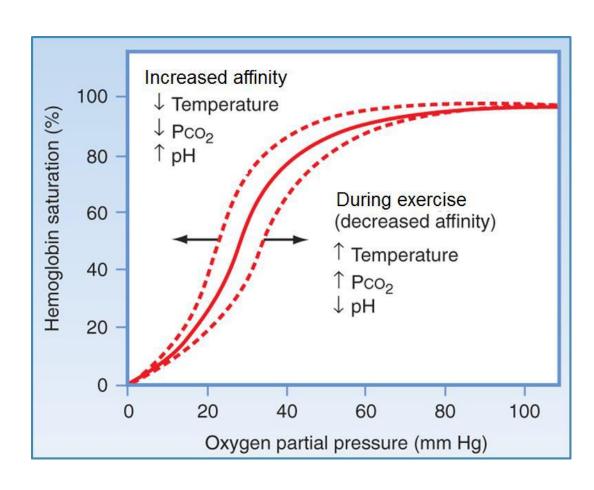
Carbon Dioxide Transport

Three Transport Mechanisms in Blood

- Dissolved in plasma (10%)
 - More soluble than O₂
- 2. Carried by hemoglobin (20%)
 - CO_2 + Hb \longleftrightarrow Hb CO_2 (carbamino hemoglobin)
 - Attached to "globin" not heme
- 3. Bicarbonate form (70%)

anhydrase proton
$$CO_2 + H_2O \longleftrightarrow \longleftrightarrow H_2CO_3 \longleftrightarrow \longleftrightarrow HCO_3^- + H^+$$
 carbonic bicarbonate

• Carbonic anhydrase is an enzyme found in RBCs

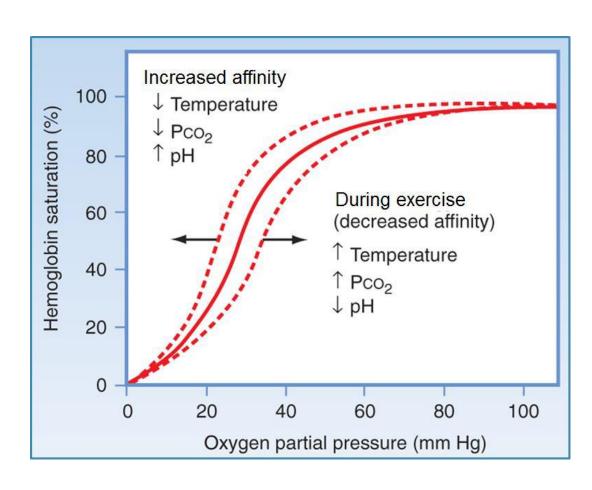


Oxyhemoglobin Dissociation Curve

How to read this graph:

- At resting cell (40 mmHg), Hb is 80% saturated with O₂
- At exercising cell (20 mmHg), Hb is 25% saturated with O₂
- At alveoli (100 mmHg), Hb is 98% saturated with O_2
- The steep slope means that a small change in PO₂ drastically effects Hb saturation

Thus, at lungs, Hb is highly saturated with O_2 . At tissues, Hb is releasing O_2 .



Oxyhemoglobin Dissociation Curve

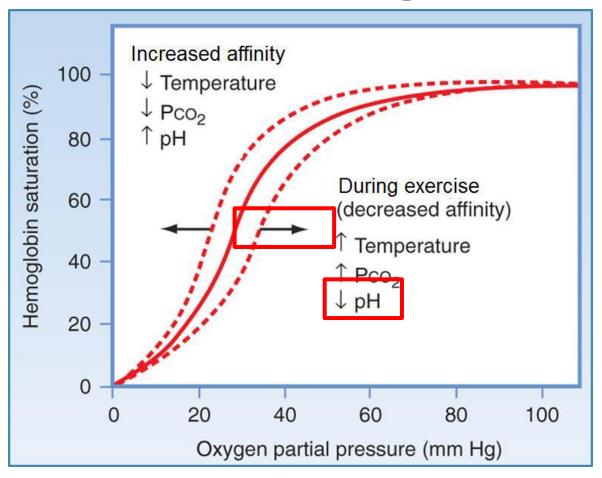
Bohr Effect

- In the presence of CO₂ or protons, Hb has a decreased affinity for oxygen
- The curve shifts to the RIGHT
- Example: now at 40 mmHg, Hb is decreased from 80% to 60% saturation with O₂
- In other words, a right shift promotes
 O₂ offloading

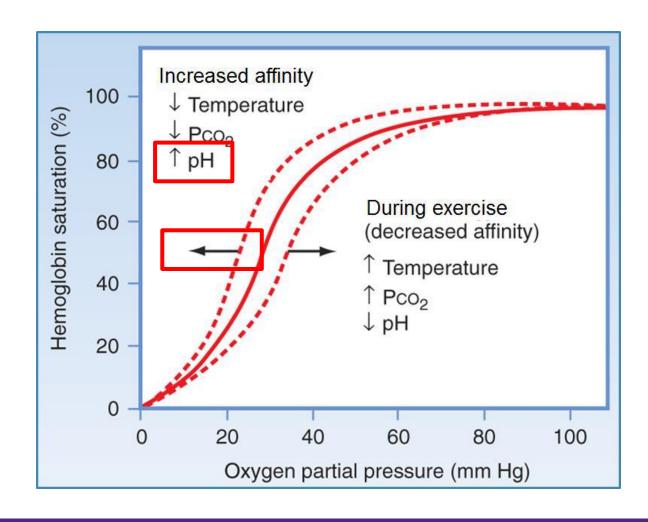
Thus, during exercise (when temp, CO₂ and H⁺ levels are high), more O₂ is delivered to tissues

Oxyhemoglobin Dissociation Curve

At Body tissues:

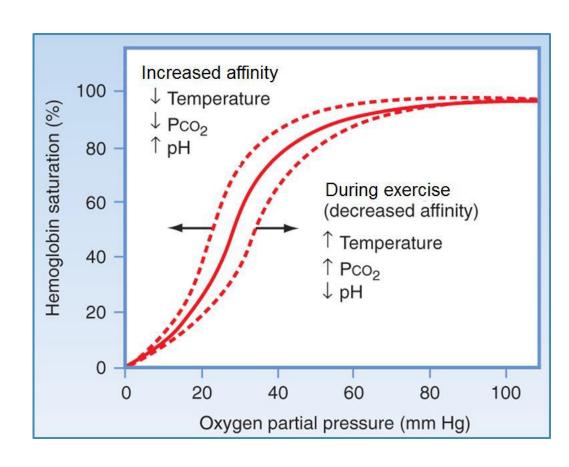

- CO2 begins to bind & form carbonic acid
- Curve shifts to right
- This enhances O₂ off loading at tissues

At Lungs:


- Blood passing through lungs gives up CO₂ & H⁺ ions in the form of carbonic acid
- Bicarbonate will combine with the proton to form CO_2 and water and CO_2 will diffuse out of the blood stream at the lungs
- This shifts O₂ dissociation curve to left
- During this process the pH will increase and the affinity for oxygen by Hb will increase, allowing for binding of O₂

Shift Right = Decreased Affinity and increased off-loading

Shift Left = Increased Affinity

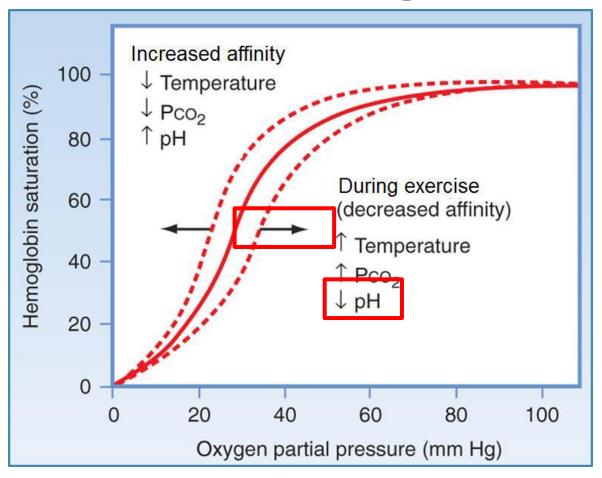


Bohr Effect

• In the presence of CO₂ or protons, Hb has a decreased affinity for oxygen

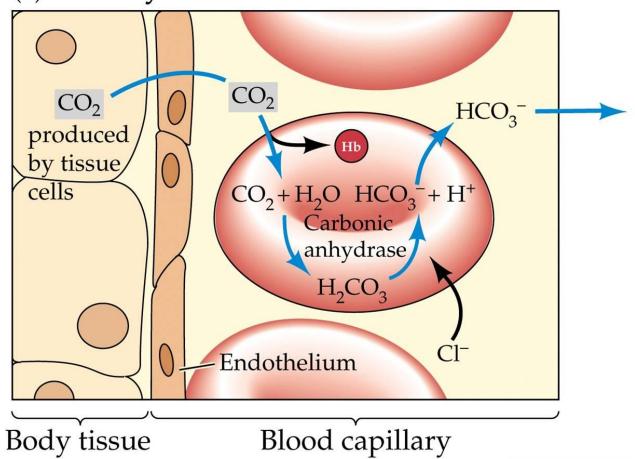
anhydrase proton
$$CO_2 + H_2O \longleftrightarrow H_2CO_3 \longleftrightarrow HCO_3^- + H^+$$
 carbonic bicarbonate

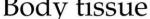
- Within the red blood cells CO₂ is converted to bicarbonate
- The pH of blood will change and cause the O₂ dissociation curve to shift right, causing more O₂ offloading at tissues



Chloride Shift

- As CO₂ leaves body tissue it enters the red blood cells
- CO₂ is converted into bicarbonate in the red blood cell and a proton is formed
- The pH will decrease and oxygen affinity of Hb will decrease, allowing off-loading into the tissues
- As bicarbonate exits the red blood cell a chloride molecule will enter to maintain the charge balance
 - To maintain an electrically neutral state

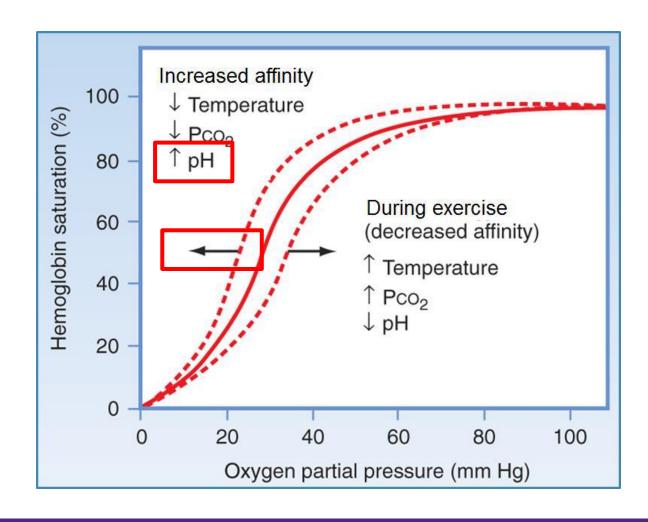



Shift Right = Decreased Affinity and increased off-loading

Chloride Shift: Body Tissues

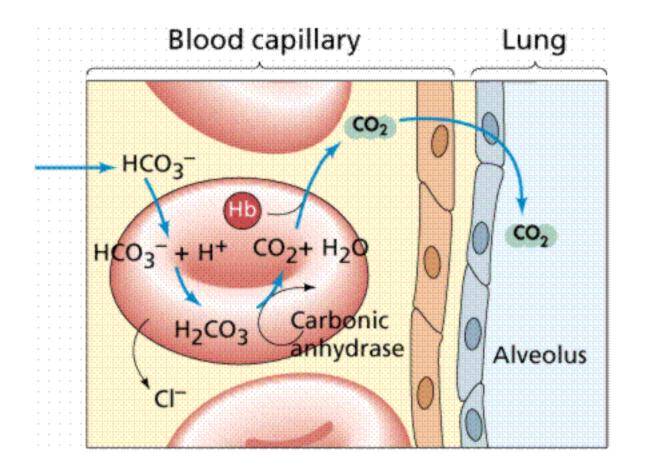
(a) In body tissue

© 2001 Sinauer Associates, Inc


Chloride Shift: At Lungs

Takes place in reverse

$$CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$$


- At pulmonary capillaries, the bicarbonate ion will enter the red blood cell and a chloride will leave the red blood cell
- Bicarbonate will combine with the proton to form CO₂ and water and CO₂ will diffuse out of the blood stream at the lungs
- During this process the pH will increase and the affinity for oxygen by Hb will increase, allowing for binding of O₂

Shift Left = Increased Affinity

Chloride Shift: At Lungs

Intro to Gastrointestinal Physiology

Chapter 10: Dr. Woods

Four Processes of Digestive System

1. Secretion

- Exocrine into lumen of GI tract
- Endocrine into blood

2. Digestion

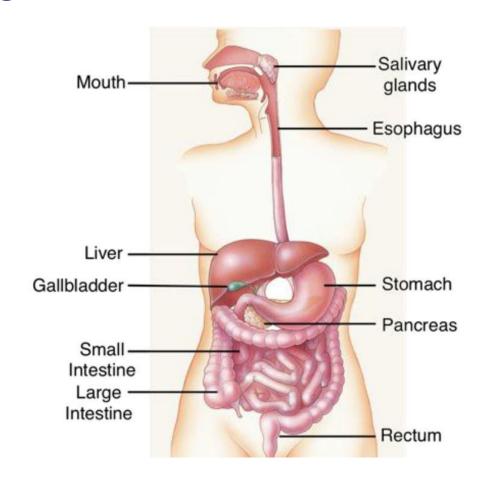
- Chemical (enzymes)
- Mechanical

3. Motility

- Propels food through each segment of GI tract
- Can participate in mechanical digestion

4. Absorption

Movement of macronutrients into cells of GI tract and then into blood


GI Tract

Main pathway

- Mouth and salivary glands
- Esophagus
- Stomach
- Small Intestine
- Large Intestine
- Rectum

Accessory Organs

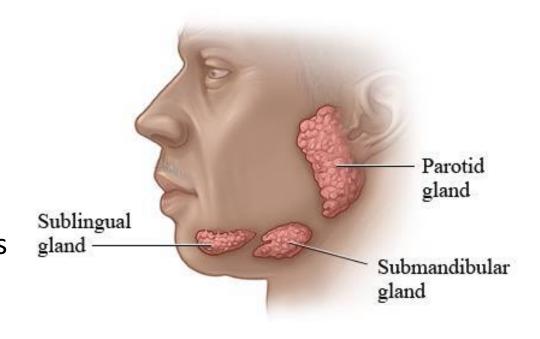
- Liver (produces bile)
- Gall bladder (stores biles)
- Common bile duct
- Pancreas (endocrine and exocrine secretions)

Salivary Glands

Function

 Produce saliva (water, mucus, ions and salivary amylase; lipase in babies)

Parotid Gland


Watery liquid that contains amylase and lingual lipase

Submandibular Gland

 Thicker liquid that contains mucus with less amylase and less lingual lipase

Sublingual Gland

A lot of mucus and very little enzymes

Mastication, Swallowing and Peristalsis

Mastication

Mechanical manipulation of food into a lump of food (bolus)

Swallowing → 3 Stages:

- 1. Voluntary stage
- 2. Pharyngeal stage (involuntary): propagation of food into pharynx; close trachea and nasal cavity
- 3. Esophageal (involuntary): propagation of food into esophagus

Peristalsis

- Movement of bolus down the esophagus by contraction of muscles
- Involuntary control by medulla
- Second peristaltic wave if food is still lodged

Mouth: Summary of Four Processes

1. Secretion

Saliva

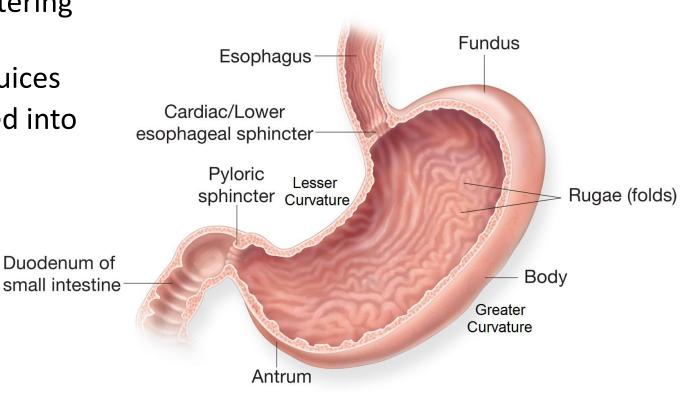
2. Digestion

- Chemical (amylase and lipase)
- Mechanical (mastication)

3. Motility

- Mastication in mouth
- Peristalsis in esophagus

4. Absorption


None

Stomach

Function

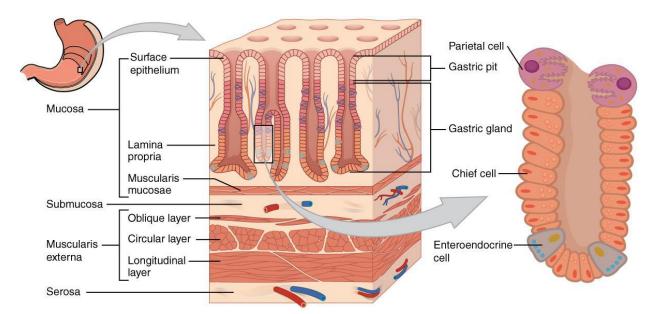
- Reservoir for food before entering intestines for absorption
- Bolus is liquefied by gastric juices
- 2-3 L of gastric juices secreted into stomach per day

Layers of The Stomach

Mucosa

- ➤ Single layer of cells that can be endocrine or exocrine
- ➤ Large folds called rugae and invaginations called pits

Submucosa

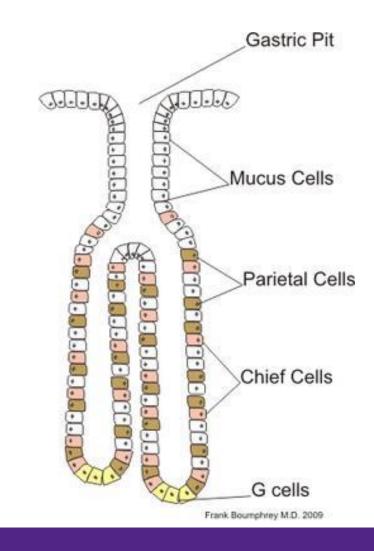

- ➤ Nervous plexus: submucosal plexus (detects food in stomach and sends signals to mucosa for response)
- Connective tissue to adhere mucosa to smooth muscle

Smooth muscle (Muscularis externa)

- Circular and longitudinal muscle to change shape of the stomach
- Nervous plexus: myenteric plexus (controls muscle)

Serosa

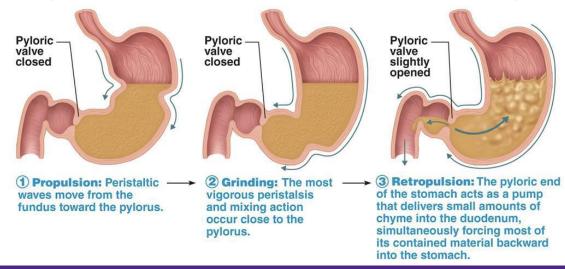
> External layer of dense connective tissue


Secretions In The Stomach

Exocrine

Cell	Secretion	Function
Mucus Neck Cells	Mucus	Protects stomach from acid
	Pepsinogen	Inactive enzyme
Chief Cells	Gastric Lipase	Breakdown fats
Parietal Cells	Intrinsic Factor	Allows absorption of vitamin B12
	HCL acid	See slide 10.

Endocrine


Cell	Secretion	Function
G Cell	Gastrin	Promotes gastric motility and function

Mechanical Digestion in the Stomach

- Gentle mixing waves(every 15-25 seconds), pyloric sphincter closed
- Vigorous mixing from body to pylorus
- Slight opening of pyloric sphincter, very small amount of chyme exits to the duodenum (retropulsion)
- Most chyme pushed back into stomach body for more mixing

Chemical Digestion in the Stomach

- HCl (parietal cells) cleaves pepsinogen (chief cells) to pepsin
- Pepsin: protein digestion
- Gastric lipase (chief cells; activated by HCl): lipid digestion
- Lingual lipase (activated by HCl): lipid digestion
- Salivary amylase (inactivated by HCl): carbohydrate digestion stops

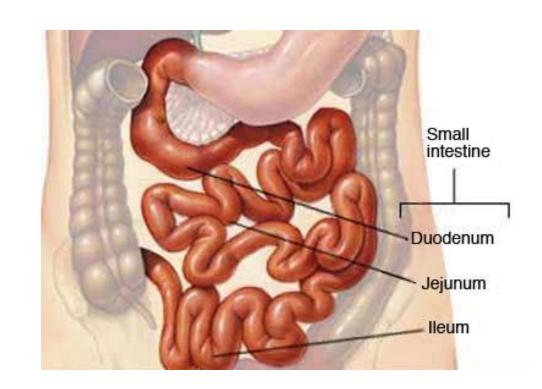
HCl Acid in the Stomach

Functions:

- Activation of pepsin
- Activation of lingual and gastric lipase
- Inactivation of salivary amylase
- Kills microbes
- Denatures proteins
- Stimulates secretion of hormones

Anatomy of the Small Intestine

Duodenum

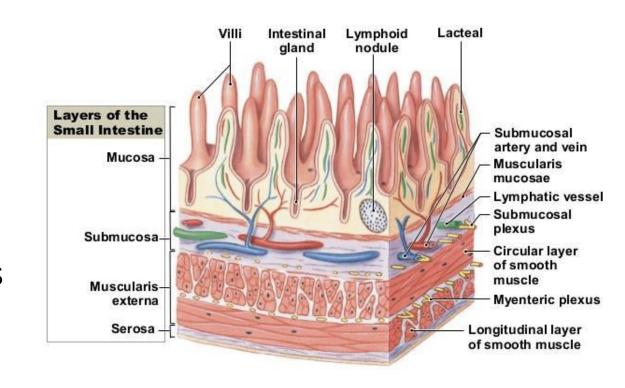

- Location of enzymes mixing with chyme, most digestion occurs here
- Can increase or decrease motility to optimize chemical digestion

Jejunum

- Many villi to increase surface area for optimal absorption
- Most absorption occurs here

lleum

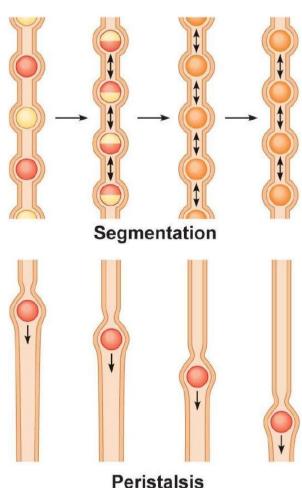
 Less villi but can still absorb nutrients if necessary



Layers of the Small Intestine

4 layers (similar to stomach)

- **≻**Mucosa
- **≻**Submucosa
 - ➤ Submucosal plexus
- ➤ Muscularis externa
 - ➤ Myenteric plexus
- **≻**Serosa
- SI has villi and microvilli that increases surface area for absorption
- Note: villi in SI ≠ rugae in stomach


Motility of the Small Intestine

Segmentation

- Localized contractions for mixing chyme with digestive juices
- Increases the interactions of particles of food in chyme with absorptive cells of the mucosa layer

Peristalsis

 Propels chyme forward to next portion of SI (from pyloric sphincter to large intestine)

Cells in the Small Intestine

Exocrine

Cell	Secretion	Function
Goblet Cells	Mucus	Protects small intestine from acid
Intestinal Gland cells	Intestinal Juice (alkaline)	Neutralize acid from stomach
Paneth Cells	Lysozyme	Anti-bacterial enzyme

Endocrine

Cell	Secretion	Function
S Cell	Secretin	Stimulates release of bicarbonate from pancreas
CCK Cells	CCK: Cholecystokinin	Stimulates release of enzymes from pancreas and bile from gallbladder
K cells	GIP: Glucose Dependent Insulinotriphic peptide	Stimulates insulin release from the pancreas

What Questions Do You Have?

You can ask in the Owl forums as well!

Also anonymously ask questions in the online dropbox!!

